The Impact of Using Digital Filter and Analog Filter on Surface Electromyography Signal

Authors

DOI:

https://doi.org/10.35882/ijahst.v1i2.6

Keywords:

EMG, Analog Filter, Digital Filter

Abstract

Many accident cases result in humans having to going a surgery to save them, then performing muscle therapy to help the patient’s recovery after going through the post-surgery. The purpose of this therapy is the patient’s body to its normal state. Exoskeleton is an additonal clothing-like tool that aims to both protect and increase the wearer's abilities. Meanwhile electromyography (EMG) is a technique to evaluate and record the electrical activity produced by skeletal muscles. The purpose of this study was to analyze the differences in using of analog and digital filters on EMG, as well as the effect on the exoskeleton simulation. The method used in the main design consists of the myoware module, notch circuit, low pass filter, arduino uno, DAC module, teraterm software, and matlab. The intercepted signal was taken from the biceps using a disposable electrode (AG/AGCL.). The EMG signal tapped by the myoware module then is continued to another circuit, then was recorded on the Teraterm software, and analyzed in MATLAB. The voltage value on the analog filter is 1.541 Volt during relaxation and 2.086 Volt during contraction, while the digital filter that has passed through the DAC has a value of 41.8 mVolt during relaxation and 269.1 mVolt during contraction. The results of this study obtained that digital and analog filter values ​​have an average difference of 5 to 30. The conclusion of this research is that the tool can detect changes in the use of analog and digital filters. Therefore, in the future research, development can be made to compare other  types of digital filters along with replacement to wireless systems. The benefit or purpose of this research is as a simulation of exoskeleton skeletal motion and to see the difference between the use of digital and analog filters.

Downloads

Download data is not yet available.

References

Young, A. J., & Ferris, D. P. (2017). State of the art and future directions for lower limb robotic exoskeletons. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(2), 171–182. https://doi.org/10.1109/TNSRE.2016.2521160

da Silva, L. D. L., Pereira, T. F., Leithardt, V. R. Q., Seman, L. O., & Zeferino, C. A. (2020). Hybrid impedance-admittance control for upper limb exoskeleton using electromyography. Applied Sciences (Switzerland), 10(20), 1–19. https://doi.org/10.3390/app10207146

De Luca, C. J., Donald Gilmore, L., Kuznetsov, M., & Roy, S. H. (2010). Filtering the surface EMG signal: Movement artifact and baseline noise contamination. Journal of Biomechanics, 43(8),1573–1579. https://doi.org/10.1016/j.jbiomech.2010.01.027

Fernando, F., & Setiawan, F. B. (2019). Pengukuran Kekuatan Kontraksi Otot Pada Bagian Torso Tubuh Menggunakan Sensor Elektromiografi. 75–84. https://doi.org/10.5614/sniko.2018.12

Firdaus, S., & Adriana, M. (2016). Pengembangan Sistem Deteksi Kelelahan Pada Pengemudi Mobil Berbasis Sinyal Electromyography (Emg). Elemen : Jurnal Teknik Mesin, 3(1), 18. https://doi.org/10.34128/je.v3i1.11

D. P. Ferris, “The exoskeletons are here,” J. Neuroeng. Rehabil., vol. 6, no. 1, pp. 6–9, 2009.

Junaidi, & Dwi prabowo, Y. (2018). Project Sistem Kendali Elektronik Berbasis Arduino. In CV Anugrah Utama Raharja.

Kumar, S. (2017). Electromyography in ergonomics. Electromyography in Ergonomics, 1–50. https://doi.org/10.1201/9780203758670

Lenzi, T., De Rossi, S. M. M., Vitiello, N., & Carrozza, M. C. (2012). Intention-based EMG control for powered exoskeletons. IEEE Transactions on Biomedical Engineering, 59(8), 2180–2190. https://doi.org/10.1109/TBME.2012.2198821

Maulana, R., & Putri, R. R. M. (2018). Pengkondisian Sinyal Electromyography sebagai Identifikasi Jenis Gerakan Lengan Manusia. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(3), 297. https://doi.org/10.25126/jtiik.201853829

Mello, R. G. T., Oliveira, L. F., & Nadal, J. (2007). Digital Butterworth filter for subtracting noise from low magnitude surface electromyogram. Computer Methods and Programs in Biomedicine, 87(1), 28–35. https://doi.org/10.1016/j.cmpb.2007.04.004

Purnomo, E. (2019). Anatomi Fungsional. In BOOK (Vol. 1). https://docplayer.info/175271036-Anatomi-fungsional-dr-eddy-purnomo-m-kes.html

Putra, R. J., Rif’an, M., & Setyawan, R. A. (2017). Implementasi Filter Digital Fir (Finite Impulse Response) Pada Field Programmable Gate Arrays (Fpga). E-Proceeding of Engineering, 1(2), 1–5.

Rokhana, R., & Wardana, P. S. (2000). Identifikasi Sinyal Electromyograph ( Emg ) Pada Gerak Ekstensi-Fleksi Siku Dengan Metode Konvolusi Dan Jaringan Syaraf Tiruan. 1–6.

Rozaqi, L., Nugroho, A., Sanjaya, K. H., & Ivonita Simbolon, A. (2019). Design of Analog and Digital Filter of Electromyography. Proceeding - 2019 International Conference on Sustainable Energy Engineering and Application: Innovative Technology Toward Energy Resilience, ICSEEA 2019, 186–192. https://doi.org/10.1109/ICSEEA47812.2019.8938645

Secciani, N., Bianchi, M., Meli, E., Volpe, Y., & Ridolfi, A. (2019). A novel application of a surface ElectroMyoGraphy-based control strategy for a hand exoskeleton system: A single-case study. International Journal of Advanced Robotic Systems, 16(1), 1–13. https://doi.org/10.1177/1729881419828197

Sitanaya, J. G., & Arifin, A. (2018). Pengolahan Sinyal EMG sebagai Perintah. 7(2), 2–6.

Triwiyanto, T., Pawana, I. P. A., Irianto, B. G., Indrato, T. B., & Wisana, I. D. G. H. (2019). Embedded system for upper-limb exoskeleton based on electromyography control. Telkomnika (Telecommunication Computing Electronics and Control), 17(6), 2992–3002. https://doi.org/10.12928/TELKOMNIKA.v17i6.11670

Vaca Benitez, L. M., Tabie, M., Will, N., Schmidt, S., Jordan, M., & Kirchner, E. A. (2013). Exoskeleton technology in rehabilitation: Towards an EMG-based orthosis system for upper limb neuromotor rehabilitation. Journal of Robotics, 2013. https://doi.org/10.1155/2013/610589

Wege, A., & Zimmermann, A. (2007). Electromyography sensor based control for a hand exoskeleton. 2007 IEEE International Conference on Robotics and Biomimetics, ROBIO, 1470–1475. https://doi.org/10.1109/ROBIO.2007.4522381

Yohanes Oxa Wijaya, Florentinus Budi Setiawan, S. (2014). Desain dan Implementasi Alat Pengukur Ketegangan Otot. Irwns, 201–205.

Young, A. J., & Ferris, D. P. (2017). State of the art and future directions for lower limb robotic exoskeletons. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(2), 171–182. https://doi.org/10.1109/TNSRE.2016.2521160

Zschorlich, V. R. (1989). Digital filtering of EMG-SIGNALS. Electromyography and Clinical Neurophysiology, 29(2), 81–86.

LADY ADA, “MCP4725 12-Bit DAC Tutorial,” ADAFRUIT, 2018. https://learn.adafruit.com/mcp4725-12-bit-dac-tutorial/using-with-arduino.

Downloads

Published

2021-12-06

How to Cite

[1]
E. D. Setioningsih, “The Impact of Using Digital Filter and Analog Filter on Surface Electromyography Signal ”, International Journal of Advanced Health Science and Technology, vol. 1, no. 2, pp. 68–73, Dec. 2021.

Issue

Section

Medical Engineering and Technology