Digital ECG Phantom Design to Represent the Human Heart Signal for Early Test on ECG Machine in Hospital

Authors

  • Sella Octa Ardila Department of Medical Electronics Engineering Technology, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia
  • Endro Yulianto Department of Medical Electronics Engineering Technology, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia https://orcid.org/0000-0002-8094-5359
  • Sumber Sumber Department of Medical Electronics Engineering Technology, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia https://orcid.org/0000-0003-1877-6280

DOI:

https://doi.org/10.35882/ijahst.v1i1.3

Keywords:

smartwatch, SpO2, BPM, Android, microcontroller

Abstract

Electrocardiograph (ECG) is a diagnostic tool that can record the electrical activity of the human heart. By analyzing the resulting waveforms of the recorded electrical activity of the heart, it is possible to record and diagnose disease. Given the importance of the ECG recording device, it is necessary to check the function of the ECG recording device, namely by performing a device calibration procedure using the Phantom ECG which aims to simulate the ECG signal. The purpose of this research is to check the ECG device during repairs, besides that the Electrocardiograph (EKG) tool functions for research purposes on ECG signals or for educational purposes. Electrocardiograph (EKG) simulator or often called Phantom ECG is in principle a signal generator in the form of an ECG like signal or a recorded ECG signal. This device can be realized based on microcontroller and analog circuit. The advantage of this simulator research is that the ECG signal displayed is the original ECG recording and has an adequate ECG signal database. ECG This simulator also has the advantage of providing convenience for research on digital signal processing applications for ECG signal processing. In its application this simulator can be used as a tool to study various forms of  ECG signals. Based on the measurement results, the error value at BPM 30 and 60 is 0.00% at the sensitivity of 0.5mV, 1.0mV, and 2.0mV, then the measurement results for the error value at BPM 120 are 0.33% and at the BPM 180 value, the error value is 0.22%. From these results, it can be concluded that the highest error value is at BPM 120 with sensitivities of 0.5mV, 1.0mV, and 2.0mV.

 

Downloads

Download data is not yet available.

References

Z. Alamanda, A. Pudji, M. R. Makruf, 2016 "Phantom ECG," vol. 28, no. 2, pp. 250–250, 2016,doi:10.4234/jjoffamilysociology.28.250.

Eka Setianingsih, A. S. R, and H. Fitriawan, “Rancang bangun kalibrator eksternal,” vol. 6, no. 2, pp. 127–140, 2012.

Gregorius Mario Tani and Priyambada Cahya Nugraha, Syaifudin) “Seminar Tugas Akhir Simulasi ECG (Phantom electrocardiograph) Berbasis Mikrokontroler, ,” 2017.

N. Nyoman. Sri. Malini, “ECG Simulator,” pp. 1–11, 1990.2014

A. A. Willa Olivia, “Rancang Bangun Kalibrator Elektrokardiogram,” Sinusoida, vol. 19, no. 2, 2017.

G. M. Tani and P. C. Nugraha, “Seminar TugasAkhir Juni Simulasi ECG (Phantom electrocardiograph) Berbasis Mikrokontroler 2. 017.

S. Informasi, J. Naam, and C. Suharinto, “Prosiding seminar nasional sisfotek Digitalisasi Grafik Elektrokardiogram denganTeknik Pixel Indexing,” Pros. Semin. Nas. sisfotek, vol. 1, pp. 172–176, 2017.

Handayani, A.. Sistem Konduksi Jantung. Buletin Farmatera, 2(3), 116. 2017

Valais, I., Koulouras, G., Fountos, G., Michail, C., Kandris, D., & Athinaios, S. Design and Construction of a Prototype ECG Simulator. Journal of Science & Technology, January. http://e- jst.teiath.gr .2014

Elektrokardiograf, R., Komputer, B., & Agung, R.. Realisasi Elektrokardiograf Berbasis Komputer Personal Untuk Akuisisi Data Isyarat Elektris Jantung. Majalah Ilmiah Teknologi Elektro, 4(1), 14–19 .2009.

N. A. Jaenal Arifin1 and 1program, “Pengolahan Citra Pada Sinyal Ekg,” Media Elektr., vol. 11, no. 1, pp. 27–33, 2019.

S. Informasi, J. Naam, and C. Suharinto, “Prosiding seminar nasional sisfotek Digitalisasi Grafik Elektrokardiogram dengan Teknik Pixel Indexing,” Pros. Semin. Nas. sisfotek, vol. 1, pp. 172–176, 2017.

R. Elektrokardiograf, B. Komputer, and R. Agung, “Realisasi Elektrokardiograf Berbasis Komputer Personal Untuk Akuisisi Data Isyarat Elektris Jantung,” Maj. Ilm. Teknol. Elektro, vol. 4, no. 1, pp. 14–19, 2009, doi: 10.24843/10.24843/MITE.

S. H and K. M, “Design and Development of ECG Simulator and Microcontroller Based Displayer,” J. Biosens. Bioelectron., vol. 09, no. 03, 2018, doi: 10.4172/2155-6210.1000256.

O. B. D. Cahyo and N. Kholis, “Rancang Bangun Simulator Elektronik Ardiogram Menggunakan FPGA Yang Terintegrasi Dengan Software Python,” J. Tek. Elektro, vol. 08, no. 03, pp. 619–625, 2019.

M. Saimi, “Rancang Bangun ECG Simulator Menggunakan Digital to Analog Converter R-2R Abstrak,” vol. 7, no. 1, pp. 156–168, 2021.

A. Rizal, I. Y. Setiadi, R. Magdalena, and V. Suryani, “Simulator Ecg Berbasis Pc Sebagai Alat Bantu Ajar Pengolahan Sinyal Biomedis.”

S. E. De Lucena, “ECG simulator for testing and servicing cardiac monitors and electrocardiographs,” 18th IMEKO TC4 Symp. Meas. Electr. Quant. 2011, Part Metrol. 2011, pp. 109–112, 2011.

A.S.Riandi Oktovian1, Suwandi2, “Perancangan Sistem Simulasi Sinyal Ecg Berbasis Mikrokontroler,” Peranc. Sist. Simulasi Sinyal Ecg Berbas. Mikrokontroler, 2018.

A. Pudji, R. Mak, and W. Wirasa, “Design and Build ECG Simulator,” vol. 8, no. 10, pp. 1084–1087, 2019.

M. A. Saputro, E. R. Widasari, and H. Fitriyah, “Implementasi Sistem Monitoring Detak Jantung dan Suhu Tubuh Manusia Secara Wireless,” Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 1, no. 2, pp. 148– 156, 2017.

Downloads

Published

2021-10-24

How to Cite

[1]
S. O. . Ardila, E. Yulianto, and S. Sumber, “Digital ECG Phantom Design to Represent the Human Heart Signal for Early Test on ECG Machine in Hospital”, International Journal of Advanced Health Science and Technology, vol. 1, no. 1, pp. 14–19, Oct. 2021.

Issue

Section

Medical Engineering and Technology