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ABSTRACT It is very common in medical studies for a patient to experience more than one event rather 

than one of interest. This led to exposing an individual to multiple risks and medical practitioners need to 

account for these risks concerning some prognostic factors.  There are many methods of dealing with multiple 

events in survival data classically, however, these methods break down when considering the top-down effect 

of the prognostic factors concurrently and when the risks of events are correlated (competing risks). This 

study aimed to develop a decision tree using a within-node homogeneity procedure in survival analysis with 

multiple events to classify individual risks for the competing risks. Since the CART methodology involves 

recursive portioning of covariates into different subgroups, this study considers the use of Deviance and 

Modified Cox-Snell residuals as a measure of impurity in the Classification Regression Tree (CART) during 

the process of partitioning. The flexibility and predictive accuracy of our learning algorithm would then be 

compared with other existing methods through simulation and the freely available online real-life data. The 

results of the simulation revealed that: using Deviance and Cox-Snell residuals as a response within the node 

homogeneity classification tree performs better than using other residuals irrespective of performance indices. 

Results from empirical studies of the two real-life data that the proposed model with Cox-Snell residual 

(Deviance=16.6498) performs better than both the Martingale residual (deviance=160.3592) and Deviance 

residual (Deviance=556.8822). Conclusively, using Cox-Snell residual (Mean Square Error 

(MSE)=0.01783563) as a measure of impurity in CART revealed improved performance than using any other 

residual methods (MSE=0.1853148, 0.8043366). This implies that the proposed methods have the capability 

of accounting for individual effects based on the prognostic biomarkers.    

INDEX TERMS Martingale residual, cox-snell residual, deviance residual, CART, and within-node 

homogeneity. 

I. INTRODUCTION 

Survival data is very common in the field of epidemiology, 

public health, and biomedical sciences. A typical example of 

survival data is the study of patients diagnosed with covid-19 

time until the patient was discharged alive or dead from the 

isolation centers [1]. Here only one event is of interest to the 

researcher, however, when considering another effect such as 

death due to other risks factors in the isolation center, then this 

is referred to as survival data with multiple events or simply 

competing risks [2].  In another word, when other events 

prevent the occurrence of events of interest, then, we say 

competing events (risk) exist [3].   Researchers such [4], [5], 

[6], and so on have applied the classical concept of analyzing 

survival data in the realm of nonparametric and semi-

parametric methods.  Most of these studies focus on the 

prediction of clinical outcomes and the identification of risk 

prognostic factors in multiple events survival analysis, 

ignoring the concept of machine learning (CART) that can 

efficiently predict the prognostic risk factors using a top-down 

tree procedure and identify possible interaction effects among 
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the biomarkers [7,8]. Therefore, the concept and fundamentals 

of machine learning techniques then become useful in the field 

of survival analysis for both low- and high-dimensional 

survival data [9,10,11].  

Classification and Regression Tree (CART) is the most 

commonly and popularly used tool for exploring large data 

building. Moreover, it is one of the most stretchy, instinctive, 

and powerful information analytics and can be applied in the 

area of determining prognostic subgroups with the same 

results within each subgroup but different outcomes between 

the subgroup. It is a categorized, successive classification 

structure that recursively partitions the set of progressive 

observations into smaller subgroups based on the binary 

division of the covariates [12,13,14]. CART was first brought 

together by Breiman et al. [15] and it gaining more attention 

recently because of its predictive ability in model building 

(tree-building) for difficult data mining problems [16,17]. 

There are other numbers techniques that can handle this 

difficulty in machine learning, they include Neural Network 

[18,19], Deep Neural Network [20,21], Multivariate Adaptive 

Regressions Spline[12], Support Vector Machine [22], and so 

on.  However, all these studies were not directly applicable to 

the survival data with competing risks and their results were 

rely on the case of a single event. Some of the previous studies 

considered the use of mean absolute error (MAE) and the sum 

of square error (SSE) for the numerical response, which 

cannot hold in survival data sets.  

In this research, we focus on a reliable decision tree 

(within-node homogeneity), which will help in categorizing 

new observations into groups. The purpose of this study is that 

the existing classical statistical tools such as the sub-

distribution hazard function, cause-specific hazard function, 

and so on; are inappropriate in this scenario, or of limited 

utility in addressing these types of classification problems. 

There are several reasons for this drawback. Firstly, the 

difficulties in variable selection, this is due to the predictors 

themselves. Secondly, different degree of variation or variance 

of the predictors occurs as a result of the predictors been failed 

to follow a normal distribution. Thirdly, the existence of 

complex interactions and patterns. Lastly, the results of 

traditional methods may be difficult to interpret in this setting. 

All these difficulties make classification and regression trees 

robust over the entire classical methods and it is Supervised 

machine learning and also known as a non-parametric. 

 
II.  METHODOLOGY 

The single or univariate event decision tree type refers to 

whether or not the device used to create each split 

discriminates based on a single event. In competing risks 

survival analysis, under the univariate event, a tree will be 

built by focusing on the event of interest and adjusting for 

other risks. We proposed to use within-node homogeneity by 

using Deviance, Cox-Snell, and Martingale residuals in the 

sub-distribution hazard function developed by Fine and Gray 

[23] i.e. hazard function associated with Cumulative 

Incidence Function (CIF). The sub-distribution hazard 

function 𝜆̃(𝑡) is assumed to take the form: 

                   𝜆̃(𝑡; 𝑍𝑖) = 𝜆̃𝑗0(𝑡)exp⁡[𝛽
𝑗𝐼(𝑍𝑖 < 𝑐)]               (1)                                                 

Where 𝜆̃𝑗0(𝑡) is an unspecified baseline sub-distribution and  

𝛽𝑗 is an unknown parameter corresponding to cut-point c. 

A. GENERAL ALGORITHM TO GROW TREE 

The impurity functions for every possible binary split of the 

predictor space Z will be considered. The split could be of 

several forms: splits on a single covariate splits on linear 

combinations of predictors, and Boolean combinations of 

splits. The simplest form, in which each split relates to only 

one covariate, can be described as follows: 

1. If a covariate Z is continuous or ordinal, then we look at 

all the possible cut points c that divide the sample into 

two groups, Z ≤ c and Z > c.  

2.  If a covariate is nominal, then we consider all the 

possible ways of forming the two groups.  

We repeat this process for all subsequent branches of the tree 

until we reach one of the predefined stopping criteria. The 

usual criteria are that the sample size in each terminal node 

is very small, the subgroups are homogeneous with respect 

to the covariates, or F1 cannot be estimated (e.g., the 

subgroup contains no observations of the event of interest). 

B. BEST SPLIT 

The "best split" is defined to be the one corresponding to the 

minimum statistic (e.g Gray, deviance, etc). Subsequently, 

the data are divided into two groups according to the best 

split. Apply this splitting scheme recursively to the sample 

until the predictor space is partitioned into many regions. 

There will be no further partition to a node when any of the 

following occurs:  

1.  The node contains less than, say 10 or 20, observations.  

2.  All the observed times in the subset are censored.  

3.  All the observations have identical covariate vectors or 

the node has only complete observations with identical 

survival times.  

This procedure results in a large tree (𝜔), which could be 

used for data structure exploration. 

C. ALGORITHM TO PRUNE TREE  

The idea of pruning is to iteratively cut off branches of the 

initial tree, 𝜔, in order to locate a limited number of 

candidate sub-trees from which an optimally sized tree is 

selected. For the proposed method, we adopt a pruning 

algorithm that exerts little computational burden. The steps 

for adopting this algorithm are as follows: 

a. Initially growing a large tree. 

b. To each of the internal nodes in the original tree, assign 

the maximal splitting statistics contained in the 

corresponding branch. This statistic reflects the strength 

of linking the branch to the tree.  

c. Among all these internal nodes, find the one with the 

smallest statistic. That is, find the branch that has the 

weakest link and then prune off this branch from the tree.  
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d. The second pruned tree can be obtained similarly by 

applying the above two steps to the first pruned tree.  

e. Repeating this process until the pruned tree contains only 

the root node, finally, a sequence of nested trees is 

obtained. The desired tree can be obtained by plotting the 

size of these trees against their weakest linking statistics. 

The tree corresponding to the "kink" point in the curve is 

chosen as the best one. 

D. IMPURITY MEASURES  

Two different impurity measures were considered in the 

study, including sum-of-square and absolute impurities 

measures.  

a. Sum-of-squares impurity function We propose to 

utilize the Cox-Snell (Cs) and Deviance (D) residuals as 

a result measure for occasion 1 risk.  

For individual i in group k, the Cox-Snell (Cs)  for the event 

of interest (j = 1) is defined as follows:   

       𝐶̂𝑠𝑖𝑘
1 = 𝐼{𝛿𝑖𝑘=1} − Λ̂0

1 (𝑇𝑖𝑘).                       (2)        

 Where Λ̂0
1(. ) Is the estimated cause-specific cumulative 

hazard function. This function can be calculated by 

Λ̂0
1 (𝑇𝑖𝑘) = ⁡∫

𝑑𝑁1𝑘(𝑆)

𝑌𝑘(𝑠)

𝑇𝑖𝑘
0

  

Where 𝑁1𝑘(𝑡) and  𝑌𝑘(𝑡) are the number of event 1 and 

number of risks at time t for group k, respectively. 

For a node h, we proposed using an impurity function 𝜙𝑠𝑠(ℎ)  
based on the sum of the square cox-Snell variations,  

                                   𝜙𝑠𝑠(ℎ) = ⁡∑ (𝐶̂𝑠𝑖ℎ
1 − 𝐶𝑠̅̅ ̅ℎ

1)2𝑖𝜖ℎ ,     (3)                                                          

where  𝐶𝑠̅̅ ̅ℎ
1 =⁡

∑ 𝐶̂𝑠𝑖ℎ
1

𝑖𝜖ℎ

𝑁ℎ
. 

Let s be a possible split for the parent node P , and let L and 

R be the corresponding left child node and right child node, 

respectively, for this split. To obtain the split that maximizes 

the within-node homogeneity, we need to find an s that has 

the largest reduction in within node impurity from the parent 

node P. That is, we need to find an s that maximizes the 

impurity function. Φ𝑆𝑆(𝑠, 𝑃) = ⁡𝜙𝑠𝑠(𝑃) − 𝜙𝑠𝑠(𝐿) − 𝜙𝑠𝑠(𝑅). 
The process can be simplified as  

                 Φ𝑆𝑆(𝑠, 𝑃) = ⁡
𝑁𝐿𝑁𝑅

𝑁𝑃
(𝐶𝑠̅̅ ̅𝐿

1 − 𝐶𝑠̅̅ ̅𝑅
1)2                      (4)                              

This process is repeated until we research the stopping 

criteria stated above.  

Similarly, for individual i in group k, the Deviance (D) for 

the event of interest (j = 1) is defined as follows:   

                   𝐷̂𝑖𝑘
1 = 𝐼{𝛿𝑖𝑘=1} − Λ̂0

1 (𝑇𝑖𝑘).                                (5)                                         

For a node h, we proposed using an impurity function 𝜙𝑠𝑠(ℎ) 
based on the sum of the square Deviance residual,  

 𝜙𝑠𝑠(ℎ) = ⁡∑ (𝐷̂𝑖ℎ
1 − 𝐷̅ℎ

1)2𝑖𝜖ℎ , where  𝐷̅ℎ
1 =⁡

∑ 𝐷̂𝑖ℎ
1

𝑖𝜖ℎ

𝑁ℎ
. 

To maximizes the impurity function, 

 Φ𝑆𝑆(𝑠, 𝑃) = ⁡𝜙𝑠𝑠(𝑃) − 𝜙𝑠𝑠(𝐿) − 𝜙𝑠𝑠(𝑅). The process can 

be simplified as  

                  Φ𝑆𝑆(𝑠, 𝑃) = ⁡
𝑁𝐿𝑁𝑅

𝑁𝑃
(𝐷̅𝐿

1 − 𝐷̅𝑅
1)2.                      (6)                                            

 

b.  Absolute value impurity function.  

Consequently, we propose using the following impurity 

function based on the absolute value function using Cox-

Snell (CABS) and Deviance (DABS) residuals. Then, the 

absolute sum of the impurity function is generally defined 

for both residuals as 

Φ𝐴𝐵𝑆(𝑠, 𝑃) = ⁡𝜙𝐴𝐵𝑆(𝑃) − 𝜙𝐴𝐵𝑆(𝐿) − 𝜙𝐴𝐵𝑆(𝑅), for each 

split when growing the tree.  

In all, four methods were proposed these are deviance sum 

of square (DSS), deviance absolute sum (DABS), the cox-

snell sum of square (CSS), and cox-snell absolute sum 

(CABS) impurity measures respectively. The existing 

methods include the martingale sum of square and 

martingale absolute sum impurity measure proposed in [14].  

E. SIMULATION PROCEDURE  
We investigate the ability of our proposed models to detect 

the structure in data with competing risks.  In TABLE 1, 

models 1 and 2 were spawned from exponential 

distributions, and models 3 and 4 were also spawned from 

Lognormal distributions. Two covariates 𝑍1 and 𝑍2 were 

related to survival times, and four other covariates  𝑍3⁡𝑡𝑜⁡𝑍6  

were not related to survival times. The covariates⁡𝑍1,⁡𝑍3, and 

𝑍4 were dichotomous variables generated from a binomial 

distribution with parameter 𝑝 = 0.5. While⁡𝑍2,⁡𝑍5, and 𝑍6 

were generated  

from a uniform distribution with the following parameters: 

(a, b) for ⁡𝑍2, (a, b) for ⁡𝑍5, and (a, b) for ⁡𝑍6,  respectively. 

0, 0.25, 0.5, and 0.75 and 1. We consider a 50% censoring 

rate for all the simulations on both additive and interaction 

between 𝑍1 and 𝑍2⁡models.  100 trees were constructed with 

500 sample sizes for each simulation. To measure the 

performance of our model, both the number of terminal 

nodes in each tree and the predictive ability of the tree were 

considered. We generated validation data sets with 500 

observations without censoring for each simulation and 

calculate the mean absolute difference between the event 1 

failure time for each observation in a validation data set and 

the median of event 1 failure time predicted by the tree. 

Similarly, this is also repeated in the second event, and below 

is the computation procedure for event 1 and event 2 times 

respectively; 

 𝑀𝐴𝐸1 =
1

𝑁1
∑ ∑ |𝑇𝑖1ℎ − 𝜏̂1ℎ|

𝑁𝑖ℎ
𝑖=1

|𝑇𝑡|

ℎ=1 ,   (7) 

 𝑀𝐴𝐸2 =
1

𝑁2
∑ ∑ |𝑇𝑖2ℎ − 𝜏̂2ℎ|

𝑁𝑖ℎ
𝑖=1

|𝑇𝑡|

ℎ=1    (8) 

Where 𝑁1ℎ  is the number of type 1 events in node⁡ℎ, 𝑁1  is 

the total number of type 1 events,  𝑇𝑖1ℎ is the 𝑖𝑡ℎ failure time 

for event 1 in terminal node ℎ, and 𝜏̂1ℎ is the median event 1 

failure time based on the training data for terminal node ℎ. 

This interpretation is also applicable to event 2 when 1 is 

chosen as the complexity penalty function. 20 numbers of 

minimum observations in each terminal node are allowed 

and a 10-fold Cross Validation method was used to select the 

final tree. All these simulations were similar to Fiona's [14]. 
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TABLE 1 
Description of models used for simulation in data structure 

performance 

Model Cumulative incidence function 

𝐹1(𝑡/𝑍1, 𝑍2) 
Expected 

terminal nodes 

|𝑇𝑡| 

1 Exponential λ = 0.1 + 0.3I{(Z1 >
0.5) ∩ (Z2 > 0.5)} 

3 

2 Exponential λ = 0.05 + 0.2I(Z1 >
0.5) + (Z2 > 0.5) 

4 or 2 

3 Log normal μ = 2 + 1.5I{(Z1 > 0.5) ∩
(Z2 > 0)}, 𝜎 = 1 

3 

4 Log normal  μ = 2 − 0.85I(Z1 > 0.5) +
0.85Z2, 𝜎 = 1 

4 or 2 

 

III. NUMERICAL RESULTS 

A. RESULTS OF SIMULATION STUDIES  

Simulation studies were conducted on models presented in 

TABLE 1 to assess the performance of the proposed model 

and whether its suits the data in terms of data structure. From 

TABLE 2 and 3, when mean and median were used to 

evaluate the performance of the proposed model, we 

observed that the proposed model has a value that is much 

closer to the cut point estimate than the existing (MSS & 

MABS) techniques irrespective of the distributions (i.e. 

whether the distribution is exponential or log-normal) and 

the censoring rates.                                                       

 
TABLE 2  

Examining tree structure with one event-of-interest, through exponential distribution. N=500 

 
TABLE 3 

 Examining tree structure with one event-of-interest, through Log-normal distribution. N=500  
Percent terminal nodes in the final tree Average  

1 2 3 4 5 6 ≥ 7 MAE1 MAE2 

Model 3:  Log normal μ = 2 + 1.5I{(Z1 > 0.5) ∩ (Z2 > 0)}, 𝜎 = 1 

MSS  60 13 13 3 4 3 4 1.6826 2.0103 

MABS 60 14 14 3 3 2 4 1.6841 2.0121 

DSS(Proposed) 
60 13 13 3 4 3 4 1.6826 2.0075 

DABS(Proposed) 59 14 14 3 4 3 3 1.6829 2.0102 

CSS(Proposed) 62 13 7 5 4 5 4 1.7326 2.0208 

CABS(Proposed)  78 15 5 0 0.5 0.5 1 1.7581 2.0127  
Percent terminal nodes in the final tree Average  

1 2 3 4 5 6 ≥ 7 MAE1 MAE2 

Model 4:  Log normal  μ = 2 − 0.85I(Z1 > 0.5) + 0.85Z2, 𝜎 = 1 

MSS  59 13 13 3 4 5 3 1.7128 1.9956 

MABS 60 14 13 2 4 4 3 1.7123 1.9867 

DSS(Proposed) 60 12 12 3 5 5 3 1.7123 2.0007 

DABS(Proposed) 60 13 13 3 4 4 3 1.7097 1.9904 

CSS(Proposed) 63 12 6 5 5 5 4 1.7596 1.9988 

CABS(Proposed)  78 14 3 1 1 2 1 1.7624 1.9946 

 
Percent terminal nodes in the final tree Average  

1 2 3 4 5 6 ≥ 7 MAE1 MAE2 

Model 1: Exponential λ = 0.1 + 0.3I{(Z1 > 0.5) ∩ (Z2 > 0.5)} 

MSS  13 3 4 4 3 13 3 1.5336 1.5098 

MABS 60 14 13 3 3 4 3 1.5340 1.5190 

DSS(Proposed) 59 13 13 4 4 4 3 1.5310 1.5095 

DABS(Proposed) 60 15 14 3 3 3 2 1.5318 1.5160 

CSS(Proposed) 64 7 4 7 5 6 7 1.5273 1.5185 

CABS(Proposed)  86 4 1 1 4 4 0 1.5246 1.5172  
Percent terminal nodes in the final tree Average  

1 2 3 4 5 6 ≥ 7 MAE1 MAE2 

Model 2: Exponential λ = 0.05 + 0.2I(Z1 > 0.5) + (Z2 > 0.5) 

MSS  
60 12 11 5 4 4 4 1.5143 1.5265 

MABS 79 6 5 3 2 3 2 1.5134 1.5224 

DSS(Proposed) 60 13 10 5 4 4 4 1.5025 1.5268 

DABS(Proposed) 70 10 8 4 2 3 3 1.5144 1.5235 

CSS(Proposed) 66 6 6 5 6 6 5 1.5131 1.5237 

CABS(Proposed)  89 2 2 3 0 2 2 1.5112 1.5205 
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Additionally, when the measure of spread and error were 

taken into consideration, the proposed model still out-fit the 

existing model except when the censoring rates is high in the 

Log-normal distribution. The results revealed the impact of 

censoring rates in competing risks and address how to choose 

the appropriate cut point in the regression tree. Interestingly, 

FIGURE 1 to 3 also justifies the efficacy of the proposed 

models based on both roots mean square error and mean 

absolute error.  Finally, the boxplot virtual display 

distinguishes between the proposed model and the existing 

model and it also revealed the performance of the proposed 

model to detect cut points more perfectly than the existing 

model. In some cases, we also observed that the existing 

techniques out-fit the proposed model only when the 

censoring rates are low with a smaller cut point estimate as 

was shown above. 
The bold-faced in TABLE 2 and 3 represent the ideal 

number of nodes. For the multiplicative hazard model, three-

terminal nodes are expected and in the additive hazard 

model, 4 terminal nodes are of interest. The average Mean 

Absolute Error was considered to check the performance of 

our grown tree. Results from this simulation revealed that the 

proposed models fit the data structure more than the existing 

methods based on the rate at which they detect the terminal 

nodes.  Additionally, the Mean Absolute Error of the 

proposed models both on exponential and log-normal 

distributions was less than the existing model 

B. REAL-LIFE DATA 

To further investigate the performance of the proposed 

models, the study wishes to apply the proposed model to 

real-life examples. We consider two real-life data both in 

bone marrow transplant [24] and prostate cancer [25]. 

 
TABLE 4 

 Results of bone marrow transplant through cause 1 (relapse) 
 

Models Deviance 

Number of 

terminal 

nodes 

The first 

covariate to 

be split 

Mean of 

Squared 

Residuals 

Proposed 

model 1 

556.8822 4 Age 1.2703 

Proposed 

model 2 

16.6498 7 Age 0.0376 

Existing 

Model  

160.3592 4 Age 0.3669 

 

In TABLE 4 the results from the various methods were 

presented based on the bone marrow transplant when relapse 

was considered an event of interest. The deviance results 

were used as a measure of model selection and models with 

the lowest Deviance values are generally preferred over 

other models. It was observed that when using the proposed 

model 2 (cox-snell) residual as a common response in 

univariate within node homogeneity provides a deviance 

value that is lower than other existing methods. Interestingly, 

when the mean squared error was considered a measure of 

model selection, the proposed model 2 was also found to be 

the most effective method in classification and regression 

tree. 

Moreover, the virtual display in FIGURES 1, 3, and 5 above 

revealed that the explanatory variable age plays a key role in 

constructed classification trees along with other covariates 

therein irrespective of the models.  This suggests that the 

survival wood of patients with bone marrow transplants rests 

on the age of that patient while other covariates (factors) 

follow.  

Another important statistical tool to be considered is 

called variable importance. The variable importance assigns 

the highest values to variables with the greatest discrepancy 

between original prediction performance and prediction 

performance after permutation. The resulting variable 

importance values have no meaning on an absolute scale, but 

their relative sizes can be useful for comparing across 

different predictor variables (for full details see [26] and 

[27]). Results right of FIGURE 2, 4, and 6 revealed that age 

is an important factor in bone marrow transplant when 

relapse is of interest since it has a longer bar than other 

factors such as platelets and tcells.  Additionally, the left-

hand sides of FIGURE 2, 4, and 6 represent the possible 

number of trees grown before the tree converges (stabilized). 

The conversion was observed to be at around 200 trees at 

was shown and this authenticates the 200 number trees 

grown in the simulation studies. 
 

TABLE 5 
Results of bone marrow transplant through cause 2 (death in remission) 

 

Next, we consider the death in remission and the 

corresponding results were shown in TABLE 5 above. 

Equivalently, deviance and mean squared residuals were 

used to measure the performance of the proposed models and 

the existing model. However, it was also observed that the 

proposed model 2 (cox-snell) performs better than other 

empirical methods based on the two selected measurements 

mentioned earlier.  

Besides, the tree display in FIGURES 7, 9, and 11 

revealed that the covariate age plays a key role in 

constructing classification trees when remission is the 

variable of interest in bone marrow transplant while other 

explanatory variables follow. These results are similar to the 

results generated when relapse is of interest.  

Finally, FIGURE 8, 10, and 12 show how the dependent 

variables (age, platelet, and Tcells) are important to the 

outcome of death in remission based on a certain period. 

Consistently, age was found to be the most important 

covariate in determining the outcome of death in remission 

Models Deviance 

Number of 

terminal 

nodes 

The first 

covariate to 

be split 

Mean of 

Squared 

Residuals 

Proposed 

model 1 

372.4276 3 Age 0.9120 

Proposed 

model 2 

49.5625 3 Age 0.1175 

Existing 

Model  

86.5535 4 Age 0.2120 
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in bone marrow transplants. This is also similar to results of 

relapse when variable importance was considered. 

IV. DISCUSSION 

We have considered two proposed methods in classification 

and regression tree and compare our results with an existing 

method. But not only covered the survival analysis but also 

considered the competing risk event with just two events of 

interest. Moreover, we have discussed and compared 

different measures of impurity used for both proposed and 

existing methods through the cumulative incidence function 

(CIF) in the within-node homogeneity tree. In particular, we 

have compared the use of deviance and cox-snell residuals 

as a common response in the classification tree with the 

martingale residual.  

Based on the simulation results in TABLE 2 and 3, it was 

observed that the results showcase the tree selection. The 

proposed models perform best in detecting the data structure 

in exponential distribution (see TABLE 2) and the existing 

techniques only outshine the proposed models in terms of 

lognormal distribution based on the percentage of a terminal 

node in the additive model and also behave poorly in the 

multiplicative model as it was shown in TABLE 3.    

Results from empirical studies from the bone marrow 

transplant data in TABLE 4 showed that the proposed model 

with Cox-Snell residual (Deviance=16.6498) performs better 

than both the Martingale residual (deviance=160.3592) and 

Deviance residual (Deviance=556.8822) when relapse is 

considered as a variable of interest. Inconsistently, when 

death in remission is considered, the proposed model 

outperformed the existing model, which tends to have high 

variability (see TABLE 5). 

Additionally, results from Prostate cancer in TABLE 4 

and 5 also reveal the better performance of the proposed 

model over the existing one in both causes. When Cox-Snell 

residual was considered, the results generated 

MSE=0.01783563 and deviance=14.9732200, of which both 

measures are less than the measures produced by Deviance 

and Martingale residua. This implies that the proposed model 

is performing better at the expense of real-life data. 

Moreover, these results validate those obtained from the 

Monte-Carlo studies. 

The major implication of this study is that it has the 

capability of predicting the survival of patients from the 

disease with respect to the prognostic markers. However, the 

study only focuses on low-dimensional survival data with 

multiple events. Therefore, there is a need to extend the study 

to high dimensional survival data with competing risks  

V. CONCLUSION 

The purpose of this study is to introduce CART into survival 

analysis with multiple events with the aim of helping the 

medical practitioners to arrange patients into several groups 

with comparable risks. The study successfully developed a 

tree for Univariate competing risk by using within-node 

homogeneity through the deviance and cox-snell residuals as 

a common response in a classification tree. The methods are 

particularly intended for information with contending risks, 

where more than one risk is of interest.  

All the proposed models seem to fit the data structure better 

than the existing model in the exponential and lognormal 

distributions through the simulation schemes. Consequently, 

when the real-life data were considered, many preferences 

were given to the proposed models than the existing ones. 

In general, when it comes to data structure performance, no 

methods appeared to be able to select covariate or number of 

terminal nodes than the proposed methods. In that case, the 

Cox-Snell residual in the within-node homogeneity 

classification tree performed better than any existing 

methods.  
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FIGURE 1. Within node tree for data from bone marrow transplant 

through cause 1 (relapse) via martingale residual 

 
FIGURE 2. Graphical representation of the variable important in bone 

marrow transplant through cause 1 (relapse) via martingale residua 

 
FIGURE 3. Within node tree for data from bone marrow transplant 

through cause 1 (relapse) via deviance residual 

 
FIGURE 4. Graphical representation of the variable important in bone 

marrow transplant through cause 1 (relapse) via martingale residual. 
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FIGURE 5. Within node tree for data from bone marrow transplant 

through cause 1 (relapse) via cox-snell residual 

 
FIGURE 6. Graphical representation of the variable important in bone 

marrow transplant through cause 1 (relapse) via cox-snell residual 

 
FIGURE 7. Within node tree for data from bone marrow transplant 

through cause 2 (death in remission) via martingale residual 

FIFURE 

8. Graphical representation of the variable important in bone marrow 

transplant through cause 1 (relapse) via martingale residua 

 
FIGURE 9. Within node tree for data from bone marrow transplant 

through cause 1 (relapse) via deviance residual 

 
FIGURE 10. Graphical representation of the variable important in bone 

marrow transplant through cause 2 (death in remission) via martingale 

residual. 

 
FIGURE 11. Within node tree for data from bone marrow transplant 

through cause 2 (death in remission) via cox-snell residual 

 
FIGURE 12. Graphical representation of the variable important in bone 

marrow transplant through cause 2 (death in remission) via cox-snell 

residual 
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