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ABSTRACT Digital health technologies are increasingly gaining attention as innovative solutions for managing neglected 

tropical diseases, including leprosy. However, the application of these technologies specifically for leprosy in South Asia 

remains underexplored. This scoping review aims to systematically map existing literature on digital health interventions 

targeting leprosy within the region and to categorize these approaches based on their technological frameworks. A 

comprehensive search was conducted across multiple academic databases, yielding 22 relevant sources, of which 20 were 

research studies and 2 were public health platforms. The included studies explored a diverse range of digital health tools such 

as artificial intelligence (AI), mobile health (mHealth), wearable devices, sensors, and public health information systems. These 

technologies are employed for various critical applications, including early detection of leprosy cases, case management, 

monitoring nerve damage and ulcers, and enhancing disease surveillance. Notably, AI-based diagnostic models have 

demonstrated high accuracy, often exceeding 90%, and have been a focal point of research due to their potential to improve 

early diagnosis and reduce delays in treatment. Mobile health solutions, including teleconsultations, helplines, and SMS-based 

communication, facilitate patient-provider interactions, especially in remote areas with limited healthcare infrastructure. 

Wearable sensors and offline data transfer systems are also explored for effective monitoring of nerve damage and ulcer 

prevention. Despite these advances, the review highlights that other digital intervention areas remain less developed, and the 

implementation challenges such as infrastructural limitations, connectivity issues, and data interoperability—pose significant 

barriers, particularly in rural South Asian settings. The review underscores the need for further research to evaluate the long-

term effectiveness, scalability, and cost-efficiency of these digital interventions. It also advocates for regional collaboration to 

bridge gaps in underrepresented countries like Bangladesh, Nepal, and Sri Lanka, ultimately aiming to enhance leprosy control 

and patient outcomes through technological innovation. 

INDEX TERMS Artificial intelligence; Digital health; Leprosy; Mobile health; South Asia.

I. INTRODUCTION 

Leprosy or Hansen’s disease is a chronic infection caused by 

Mycobacterium leprae and, less commonly, Mycobacterium 

lepromatosis. It mostly affects the skin, eyes, mucous 

membranes, and peripheral nerves. If left untreated, it can lead 

to severe impairment. Depending on the immune response, 

lepromatous leprosy has numerous lesions and weak 

immunity, whereas tuberculoid leprosy has few well-defined 

lesions and strong immunity. The disease manifests years after 

exposure and is transferred by respiratory droplets or 

prolonged close contact. Treatment relies on multi-drug 

therapy (MDT), which contains rifampicin, dapsone, and 

clofazimine and has been proven to be helpful in treating the 

condition. Effective management still depends on prompt 

care.  

Ancient manuscripts from China, India, and the Middle 

East mentioned leprosy, which dates back to 2000 B.C. [1], 

[2]. In the Middle Ages, there was a common practice of leper 

colonies and leprosy was viewed as a moral failing [2], [3]. 

Armauer Hansen’s discovery of Mycobacterium leprae in 

1873 changed the disease’s perception from a moral failing to 

a medical disease. Leprosy’s global prevalence greatly 

decreased after the 1980s when the WHO introduced MDT, 

and the disease was declared eliminated as a public health 

problem in 2000 [4].  
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South Asia continues to account for more than half of all 

leprosy cases globally. India accounted for 107,851 of the 

182,815 new cases recorded globally in 2023 [4]. Pakistan 

(236) has relatively fewer cases. However, Bangladesh 

(3639), Sri Lanka (1520), and Nepal (2522) also indicate 

notable prevalence. Even though initiatives like India’s 

National Leprosy Eradication Programme (NLEP) achieved 

some success, eradication has been more challenging because 

of factors like poverty, limited access to healthcare, and the 

impact of COVID-19.  

Leprosy is highly stigmatized and causes psychological 

distress, discrimination, and social exclusion. According to 

studies done in India, patients exhibit high levels of anxiety 

and social isolation [5], [6], which are fueled by 

misconceptions about the disease and its labelling. Rural 

communities usually delay treatment because they rely on 

traditional cures or unskilled practitioners [7]. Gender 

disparities, financial limitations, and limited access to 

healthcare further obstruct timely care.  

In South Asia and other developing countries, digital health 

has huge potential for addressing healthcare issues. They help 

to overcome obstacles such as the cost of transportation, 

isolated areas, and a lack of healthcare facilities. 

Digital health tools have proven useful in managing chronic 

conditions like diabetes and asthma [8], [9]. During the 

COVID-19 pandemic, these services grew rapidly. Chatbots 

and virtual support groups have also shown potential as mental 

health solutions for reducing depression and anxiety [10].  

Although leprosy digital health solutions are still in their 

infancy, global attempts have shown potential [11]. Leprosy 

and its treatment have already benefited from mobile apps and 

telemedicine, and South Asia may see similar improvements. 

However, there is still an absence of studies on digital health 

specifically for leprosy in South Asia as well as globally. Due 

to its status as a neglected tropical disease, leprosy may not 

receive enough funding or attention [3]. The majority of 

current research focuses on other NTD or more general health 

issues. While global reviews on digital health for leprosy exist 

[11], [12], [13], they provide limited coverage of South Asian 

research, typically including only a few studies from this 

region. To our knowledge, no review that focuses exclusively 

on digital health and leprosy exists for South Asia or its 

individual countries. This study seeks to address this gap by 

conducting a scoping review of the literature on digital health 

for leprosy in South Asia. Given the exploratory nature of this 

topic and the broad range of interventions, a scoping review is 

appropriate for systematically mapping available literature 

without restricting studies based on methodology.  

This paper is organized as follows: The method for 

identifying and evaluating relevant studies is given in the 

Methods section. The Results section includes a summary of 

the extracted data as well as findings categorized by the used 

digital health technology. In the discussion, these results are 

interpreted and the limits of this study are acknowledged. 

Finally, the study’s findings are summarized in the 

Conclusion. 

 
II. METHODS 

This study conducted a scoping review to explore the usage of 

digital health for leprosy, specifically in the South Asian 

context. The review’s goal was to map existing literature. 

Specifically, this study addresses the following Population, 

Concept, and Context (PCC) question: What types of digital 

health technologies have been implemented or studied for 

leprosy in South Asia, and how can they be categorized based 

on their technological approach? No formal review protocol 

was registered for this study. 

A. DEFINITION OF DIGITAL HEALTH 

This review defines digital health in line with the World 

Health Organization (WHO) and U.S. Food and Drug 

Administration (FDA). The World Health Organization 

(WHO) defines digital health as “the field of knowledge and 

practice associated with the development and use of digital 

technologies to improve health.” It includes various domains, 

including artificial intelligence, big data, blockchain, health 

information systems, the Internet of Things (IoT), 

interoperability, and telemedicine [14]. The U.S. Food and 

Drug Administration (FDA) describes digital health as 

encompassing “mobile health (mHealth), health information 

technology (IT), wearable devices, telehealth, telemedicine, 

and personalized medicine.” Digital health technologies 

use “computing platforms, connectivity, software, and sensors 

for health care and related uses,” spanning applications from 

wellness monitoring to medical devices [15]. In line with these 

definitions, this review considered studies involving the use of 

digital health technologies for leprosy. 

B. ELIGIBILITY CRITERIA  

Studies were considered eligible if they met the following 

criteria:  

Population & Scope: 

a. Conducted in South Asia (India, Bangladesh, Nepal, 

Pakistan, Sri Lanka), or specifically targeting the South 

Asian leprosy context. 

b. Specifically examines digital health applications for 

leprosy. 

c. For Artificial Intelligence and machine learning, studies 

that developed or tested models for leprosy.  

 

Study Types Considered: 

Pilot studies, case studies, experimental studies, qualitative 

research, and official reports. 

 

Language & Publication Status: 

English-language studies published between 2010–

2024 in peer-reviewed journals or official reports by 

recognized health organizations. 
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The following types of studies were excluded:  

Study Focus: 

a. Studies on general healthcare systems that do not 

specifically reference leprosy. 

b. Studies focused on leprosy outside of South Asia. 

 

Study Types Excluded: 

a. Reviews: Meta-analyses, systematic reviews. 

b. Studies focused solely on biomedical aspects of 

leprosy without digital health components. 

c. Commentaries, expert opinions, and perspective articles. 

d. Non-Empirical Studies: Conceptual frameworks, 

theoretical discussions, or policy 

recommendations without any data, intervention, or 

evaluation. 

 

Language Exclusions: 

Studies in languages other than English (unless fully 

translated). 

C. SEARCH STRATEGY AND STUDY SELECTION 
PROCESS 

This scoping review was guided by PRISMA-ScR but adapted 

in certain areas to accommodate the limited availability of 

indexed literature. The search strategy was intentionally 

flexible and iterative. Searches were conducted over multiple 

days (December 17–26, 2024) across multiple sources, 

including Google Scholar, PubMed, and IEEE Xplore.  Search 

terms were adjusted dynamically based on initial results and 

emerging keywords. Keyword variations, synonyms, and 

related actions were explored to expand coverage. Examples 

of keywords and alternative terms used:  

a. Disease-related: Leprosy, Hansen’s disease.  

b. Technology: Telemedicine, mHealth, eHealth, Telehealth, 

SMS, Artificial Intelligence, Machine Learning, 

Electronic Health Records, Health Information 

Technology, Blockchain etc.  

c. Functions (actions): Sensing, Monitoring, Managing, 

Recording, Tracking, Screening, Diagnosing.  

d. Geographical focus: South Asia, India, Bangladesh, Nepal, 

Pakistan, Sri Lanka. 

 

IEEE Xplore supports structured Boolean queries, which 

allowed precise filtering of relevant studies. Example queries 

are: 

a. ("leprosy" OR "Hansen’s disease") AND ("artificial 

intelligence" OR "machine learning" OR "deep learning") 

AND ("diagnosis" OR "screening" OR "classification") 

AND ("South Asia" OR "India" OR "Bangladesh" OR 

"Nepal" OR "Pakistan" OR "Sri Lanka") 

b. ("leprosy" OR "Hansen’s disease") AND ("wearables" OR 

"sensors" OR "devices") AND ("sensing" OR 

"monitoring") AND ("South Asia" OR "India" OR 

"Bangladesh" OR "Nepal" OR "Pakistan" OR "Sri Lanka") 

 

Additional queries explored "blockchain," "electronic 

health records (EHR)," and "remote monitoring", depending 

on emerging keywords and study relevance. 

Searches in PubMed followed a similar Boolean approach, 

but indexing differences required adaptations. In PubMed, 

broader digital health terminology was required to retrieve 

relevant results. Search queries included terms such as: 

a. ("leprosy" OR "Hansen’s disease") AND ("digital health" 

OR "eHealth" OR "health information technology") AND 

("South Asia" OR "India" OR "Bangladesh" OR "Nepal" 

OR "Pakistan" OR "Sri Lanka") 

b. ("leprosy" OR "Hansen’s disease") AND ("telemedicine" 

OR "mHealth" OR "telehealth") AND ("South Asia" OR 

"India" OR "Bangladesh" OR "Nepal" OR "Pakistan" OR 

"Sri Lanka") 

 

Since Google Scholar does not fully support Boolean logic, 

simplified keyword-based queries were used. To improve 

relevance and ensure regional coverage, technology-related 

keywords were combined individually with each country 

name. Example queries included: 

a. "Leprosy digital health South Asia" 

b. "Hansen’s disease mHealth India" 

c. "Leprosy AI diagnosis Nepal Pakistan" 

d. "Leprosy telemedicine Pakistan" 

e. "Leprosy AI diagnosis Bangladesh" 

f. "Leprosy electronic health records Sri Lanka" 

 

PubMed and IEEE Xplore yielded manageable numbers of 

targeted results (33 and 14 respectively), all retrieved studies 

were included in the formal selection process. 

However, Google Scholar returned thousands of results, many 

of which were irrelevant. To improve relevance, we manually 

screened the first 10 pages of results per query. This 

preliminary relevance screening helped narrow down Google 

Scholar results to 69 studies. Only studies that met broad 

relevance were formally included in PRISMA, resulting 

in 116 records screened in the next stage. A preliminary 

relevance screening involved, title screening to exclude 

clearly irrelevant studies, and abstract screening (when 

necessary) for borderline cases. Importantly, the Google 

Scholar relevance screening was not a formal part of 

PRISMA. It was only used to remove clearly irrelevant studies 

before formal screening began. In some cases, manual 

screening of references, citation tracking, and 

forward/backward searching were also applied. A total of 116 

studies were identified, and after full-text screening, 20 studies 

and 2 public health systems met the final inclusion criteria. 

Unlike the research studies, Nikusth and LeIs were included 

as public health platforms, identified through published 

studies [16], [17]. 

This review primarily included peer-reviewed studies and 

official health reports, with limited incorporation of grey 

literature (e.g., NGO reports, government documents, 

unpublished studies). The selection of studies was limited to 
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English-language publications indexed in specific databases 

(Google Scholar, PubMed, IEEE Xplore), which may have 

resulted in the omission of relevant non-English research and 

grey literature sources. While this approach ensured source 

reliability, it may have underrepresented unpublished or 

regionally reported digital health interventions. The potential 

impact of these choices is further discussed in the Limitations 

section. 

D. DATA CHARTING 

The studies were first categorized based on recurring types of 

technological approaches. Following this categorization, data 

charting was tailored to capture the most relevant details 

within each category. For AI-based studies, we charted details 

on the models, dataset size, validation methods, and 

performance metrics. For mobile health studies, we charted 

the mHealth tool used, objectives, target users, evaluation 

methods, and findings. For wearable and sensor-based studies, 

we charted device type, objectives, sensors used, testing 

methods, and findings. Public health information systems 

were charted based on system functionality, data collection 

methods, and accessibility. Studies that did not fall under the 

above categories were charted based on study objectives, 

Sample/dataset characteristics, methods, and findings. Studies 

were categorized based on the type of digital health 

technology rather than their specific applications or functions. 

E. JUSTIFICATION FOR LIMITED REGIONAL SCOPE 

Although the review covers the wider South Asian region, the 

majority of the included papers were from India. This focus 

may be influenced by the following factors:  

a. India is a priority area for study and intervention due to its 

high leprosy burden.  

b. The existence of programs and healthcare efforts in India.  

c. The scarcity of published or documented interventions in 

other South Asian nations.  

Although this regional focus may appear biased, it is not the 

consequence of a deliberate rejection of research from other 

countries, but rather of the distribution of relevant research. 

This finding indicates a greater gap outside of India. 

 

 

 

FIGURE 1. PRISMA flow diagram summarizing the study selection process

 

III.  RESULTS 

A total of 116 records were identified, with 114 studies 

screened. Following full-text assessment, 20 studies and 2 

public health systems were included in the review. Further 

details on the selection process can be found in the PRISMA 

flow diagram (FIGURE 1). The majority of inclusions were 

from India (21), with a contribution of a public health system 

from Sri Lanka (1). A total of 20 studies and 2 public health  

 

 

 

systems were analyzed and categorized into five categories: 

Artificial Intelligence (n=11), Mobile Health (n=3), 

Wearables and Sensors (n=4), Public Health Information 

Systems (n=2), and Additional Digital Methods (n=2). The 

majority of AI-based studies included in this review were 
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published after 2020. The extracted findings are summarized 

below. 

A. ARTIFICIAL INTELLIGENCE 

As shown in TABLE I, studies used a wide range of Artificial 

Intelligence and Machine Learning techniques, including 

artificial neural networks (ANNs) [18], [19], convolutional 

neural networks (CNNs) [19], [20], [21], [22], [23], [24], long 

short-term memory networks (LSTMs) [25], support vector 

machines (SVMs) [20], [21], [26], logistic regression [24], 

[26], rule-based classification [26], ensemble learning 

(AdaBoost, XGBoost, Random Forest) [22], [23], [27], and 

few-shot learning [28].  

The studies utilized mainly two types of data sources, 

electronic health records (EHRs) [18], [26], [27], and skin 

lesion images [19], [20], [21], [23], [24], [28].  Several 

challenges were identified, including data imbalance (in 

image-based studies) [20], [28], limited data availability  [20], 

[28], the need for model transparency and trustworthiness 

[20]. Machine learning methods are used in several studies to 

classify leprosy. According to a study by J. Mehta et al. [26], 

which compared these algorithms with a rule-based 

classification method, the rule-based method outperformed 

the algorithms with a limited dataset, obtaining 94.9% 

accuracy for other types and 99.2% accuracy for 

multibacillary/paucibacillary classification. However, J. 

Mehta et al. [26] imply that machine learning algorithms may 

outperform rule-based methods when given larger datasets. A 

different approach by J. Mehta and Kalla [27] used ensemble 

techniques that include AdaBoost and XGBoost to improve 

the precision of CART and Random Forest models in 

predicting the severity of leprosy.  

The usage of deep learning models is common. As stated by 

Jalpa et al. [18], Artificial Neural Networks (ANNs) will likely 

perform better than other machine learning techniques with 

larger datasets. H. S. Baweja and Parhar [24] used web-

scraped photos and a dataset from DermnetNZ to apply a 

Convolutional Neural Network (CNN) architecture and obtain 

91.6% accuracy in leprosy lesion detection. This CNN 

architecture was based on Google’s Inception-v3 model. J. D. 

Mehta et al. [25] classified leprosy severity (mild, moderate, 

and severe) with 99.11% accuracy using a Long Short-Term 

Memory (LSTM) network optimized with Chicken Swarm 

Optimization (CHSO). This CHSO-LSTM model performed 

better than a Particle Swarm Optimization-based LSTM 

model and other deep learning models such as ANN, GRU, 

LSTM, and Bi-LSTM. Gawali and Subbulakshmi [21] used 

multiple CNN architectures, including VGG16, MobileNet 

v1, Xception v1, and EfficientNetB0, with EfficientNetB0 

outperforming the others (accuracy of 0.9138, recall of 

0.9298, and F1 score of 0.9217). A study by A. K. Baweja et 

al. [20] used Explainable AI (XAI) approaches such as 

Activation Layer Visualization, Occlusion Sensitivity, and 

Grad-CAM to improve the interpretability of the CNN model 

LeprosyNet, resulting in 98% accuracy. Jaikishore et al. [19] 

achieved high accuracy of disease classification (94.32%) and 

severity prediction (91%), using a modified MobileNetV2 

architecture (SkinLesionNet) for skin disease classification 

and a second model (SeverityNet) for disease severity.  

Beesetty et al. [28] explored few-shot learning with a 

Siamese network to address the problem of data scarcity, with 

focus on learning from a small number of samples per class. 

The study also used a hierarchical agglomerative clustering 

algorithm to subgroup lesions based on morphology.  

Some studies combined different techniques. A study by 

Jitendra et al. [22] used a Random Forest classifier to combine 

deep features from ResNet101 with GLCM (Gray-Level Co-

occurrence Matrix) features. Regions of interest (ROIs) were 

identified using deep semantic segmentation (UNet), followed 

by Random Forest classification, GLCM, and ResNet101 

feature extraction. Another study applied GLCM and deep 

features (from AlexNet) for classification after first 

identifying ROIs using heuristic segmentation [23].

 
TABLE 1 

Summary of AI-Based Studies for Leprosy Diagnosis and Classification 

Authors AI Model Used 
Dataset Size and 

Source 

Validation 

Method 

Accuracy and 

Performance 

Clinical 

Testing? 

H. S. Baweja 

and Parhar [24] 

CNN 

(TensorFlow) 

120 images; 

DermnetNZ, web 

scraping 

Validation 

accuracy vs. 

iteration 

91.6% accuracy No 

J. Mehta et al. 

[26] 

Rule-based 

Algorithm, 

Support Vector 

Machine (SVM), 

Logistic 

Regression 

236 patient 

records; data 

collected from a 

web system 

10-fold cross-

validation 

Rule-Based Algorithm: 

99.2% (WHO), 94.9% 

(Jopling).  

SVM: 98.7% (WHO), 

87.7% (Jopling).  

Logistic Regression: 

96.6% (WHO), 83.4% 

(Jopling). 

No 

http://ijahst.org/index.php/ijahst/index


International Journal of Advanced Health Science and Technology 
Multidisciplinary : Rapid Review : Open Access Journal                                   eISSN: 2808-6422: p-ISSN:3037 

 

Vol. 5 No.2, April 2025, pp:40-53                                                                                                          

 Homepage: ijahst.org                                     45 

Authors AI Model Used 
Dataset Size and 

Source 

Validation 

Method 

Accuracy and 

Performance 

Clinical 

Testing? 

Jalpa et al. [18] Artificial Neural 

Network (ANN), 

Machine Learning 

(Logistic 

Regression, SVM) 

Size not 

mentioned; 

Bombay Leprosy 

Project 

K-Fold Cross-

Validation (k = 

3), Train-Test 

Split (80-20 

ratio) 

WHO Classification 

(PB/MB): SVM: 98.7% 

Accuracy (Best), Logistic 

Regression: 96.6%, 

ANN: 95.83%  

 

Ridley-Jopling 

Classification (6 

subtypes): SVM: 98.7% 

Accuracy (Best), Logistic 

Regression: 96.6%, 

ANN: 95.83% 

No 

Beesetty et al. 

[28] 

Siamese Network-

based Few-Shot 

Learning (FSL) 

396 skin lesion 

images (368 

leprosy, 28 

leprosy-simulants) 

Sensitivity and 

specificity 

metrics, 

episodic few-

shot tasks 

Train accuracy: 89.38% - 

91.25%, 

Test accuracy: 73.0% - 

73.12%, 

Sensitivity: 72.39% - 

73.66%, 

Specificity: 69.33% - 

77.65% 

No 

J. D. Mehta et al. 

[25] 

Chicken Swarm 

Optimized Long 

Short-Term 

Memory (CHSO-

LSTM), 

Compared with 

other models: 

ANN, GRU, 

LSTM, Bi-LSTM, 

PSO-LSTM 

3035 electronic 

health records; 

collected from an 

Indian leprosy 

care center 

Train-Test Split: 

70%-30%. 

Performance 

evaluated using 

confusion 

matrix and 

standard 

classification 

metrics 

CHSO-LSTM:  

Accuracy: 99.11%, 

Precision: 99%,  

Recall: 99%, F1-score: 

99%, MCC: 0.9902, 

CCE-Loss: 0.019  

 

Outperformed ANN, 

GRU, LSTM, Bi-LSTM, 

and PSO-LSTM 

No 

Jaikishore et al. 

[19] 

SkinLesion Net 

(based on 

MobileNet V2), 

SeverityNet 

1524 images; 

DermNet NZ, 

CNN-image 

dataset, web-

scraped images 

Confusion 

matrix analysis, 

performance 

metrics, cross-

validation with 

different models 

SkinLesion Net: 94% 

accuracy for disease 

classification, 

SeverityNet: 91% 

accuracy for severity 

prediction 

No 

Gawali and 

Subbulakshmi 

[21] 

EfficientNetB0, 

VGG16, 

MobileNet v1, 

Xception v1 

1476 leprosy 

images 

(tuberculoid 

subtype); Kaggle 

dataset 

Split into 

training, 

validation, and 

test sets. Early 

stopping based 

on validation 

accuracy 

EfficientNetB0: 

Precision: 0.9138, Recall: 

0.9298, F1 score: 0.9217  

VGG16:  

Precision: 0.7714, Recall: 

0.9474, F1 score: 0.8504  

MobileNet v1:  

Precision: 0.9592, Recall: 

0.8246, F1 score: 0.8868 

Xception v1: 

Precision: 0.8947, Recall: 

0.8947, F1 score: 0.8947 

No 
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Authors AI Model Used 
Dataset Size and 

Source 

Validation 

Method 

Accuracy and 

Performance 

Clinical 

Testing? 

A. K. Baweja et 

al. [20] 

LeprosyNet 

(CNN), compared 

with AlexNet and 

ResNet. 

Dataset size not 

specified; 

Dermnetnz image-

based dataset 

(Kaggle) 

80:20 data split 

(80% training, 

20% testing). 

Performance 

evaluated using 

confusion 

matrix and ROC 

curve. 

LeprosyNet: 98% 

accuracy (Precision: 

0.975, Recall: 0.98, F1 

Score: 0.975)  

AlexNet: 81% accuracy 

(Precision: 0.80, Recall: 

0.82, F1 Score: 0.80)  

ResNet: 80% accuracy 

(Precision: 0.80, Recall: 

0.80, F1 Score: 0.80) 

No 

J. Mehta and 

Kalla [27] 

CART, AdaBoost, 

XGBoost, 

Random Forest 

with K-Folds 

Cross-Validation 

250 patient 

records; EHR 

database 

Cross-

validation: 70% 

for training, 

30% for testing. 

K-Folds Cross-

Validation (for 

Random Forest) 

CART: 92% accuracy, 

95% precision, 92% 

recall, 92% F1-score 

Random Forest with K-

Folds: 95% accuracy, 

95% precision, 95% 

recall, 95% F1-score 

AdaBoost: 97% 

accuracy, 97% precision, 

97% recall, 97% F1-score 

XGBoost: 97% accuracy, 

96% precision, 99% 

recall, 94% F1-score 

No 

Jitendra et al. 

[22] 

Deep CNN with 

Semantic 

Segmentation, 

GLCM + 

ResNet101 

(Hybrid model), 

Random Forest for 

Classification 

Not specified Not specified Accuracy: 97.24%, 

Precision: 99.69%, 

Recall: 95.82%, 

F-Measure: 0.98 

No 

Jitendra et al. 

[23] 

Hybrid model 

combining GLCM 

features and 

AlexNet, Random 

Forest for 

classification. 

220 leprosy lesion 

images; sourced 

from hospitals and 

online platforms 

80% training 

and 20% for 

cross-validation. 

Performance 

was evaluated 

using statistical 

parameters 

(accuracy, 

precision, recall, 

F-score). 

GLCM model:  

Accuracy = 92.7%,  

Precision = 89.5%, Recall 

= 92.1%,  

F-score = 0.9402 

 

Hybrid model:  

Accuracy = 96.6%,  

Precision = 99.7%, Recall 

= 95.8%,  

F-score = 0.9771 

No 

aANN = Artificial Neural Network, SVM = Support Vector Machine, CNN = Convolutional Neural Network, FSL = Few Shot Learning, CCE = Categorical 

Cross-Entropy, GRU = Gated Recurrent Unit, PSO = Particle Swarm Optimization, ROC = Receiver Operating Characteristic, AUC = Area Under the Curve, 

CART = Classification and Regression Trees, LSTM = Long Short-Term Memory, MCC = Matthews Correlation Coefficient, EHR = Electronic Health Records, 

AdaBoost = Adaptive Boosting, XGBoost = Extreme Gradient Boosting, GLCM = Gray-Level Co-occurrence Matrix 

 

B. MOBILE HEALTH 

As shown in TABLE II, the studies involving mobile phones 

employed different levels of technological sophistication. Two 

studies focus on the use of mobile phones to improve 

communication between healthcare workers and leprosy 

patients. A study by S. K. Paul and Kumar [29] outlines the 

uses of simple cell phones and a toll-free number for routine 

health updates, medication reminders, and patient concerns. 

Another study conducted in Kolkata used a "missed call"  
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TABLE 2 
Overview of Mobile Health (mHealth) Interventions for Leprosy

Authors 
mHealth Tool 

Used 
Objective Target Users Evaluation Method Findings 

Lal et al. [30] Mobile telephony 

(helpline and call-

back). 

Improve 

communication, 

improve adherence, 

reduce defaulters, and 

reduce anxiety 

Leprosy patients in 

Kolkata (urban slums), 

registered for MDT. 

Pilot study, telephonic 

interviews with 105 

patients. 

Improved knowledge, 

satisfaction, early 

detection, higher TCR 

(62%), reduced 

defaulters. 

S. K. Paul and 

Kumar [29] 

Mobile handsets 

(non-android) with 
call and SMS 

functionality, toll-

free number for 

communication. 

Improve treatment 

adherence and self-care 
practices for leprosy 

patients. Address 

barriers to treatment. 

Enhance communication 

for follow-up and 

support. 

Leprosy patients 

(newly diagnosed), 
registered at a tertiary 

referral hospital in 

India. 

Regular patient 

interactions via mobile 
phone. Monitoring 

treatment adherence, 

side effects, and self-

care practices. Follow-

up calls for missed 
hospital visits and 

financial support 

issues. 

Increased adherence to 

treatment through 
mobile 

communication. Early 

identification of 

financial barriers 

preventing hospital 
visits. Improved 

patient engagement 

with health workers, 

preventing default and 

promoting treatment 

continuity. 

Nikam et al. [31] AI-based mobile 
application for 

leprosy diagnosis. 

To develop a cost-
effective, quick, and 

accessible method for 

diagnosing leprosy 

through a mobile app. 

General population in 
leprosy-endemic 

regions (e.g., India), 

individuals seeking 

quick leprosy 

diagnosis. 

Usability testing with 
15 participants using 

SUS, primary research 

via interviews, 

contextual inquiry, and 

literature review. 

The app was well-
received with a SUS 

score of 80.6. 

aMDT = Multi-Drug Therapy, TCR = Treatment Completion Rate, SUS = System Usability Scale. 

 

system, which allowed patients to get in touch with 

supervisors for help and guidance [30]. Nikam et al. [31] 

propose an AI-based mobile application for diagnosing 

leprosy. This application would use a smartphone camera to 

take images of skin lesions, which would then be processed by 

an artificial intelligence system for detection. The AI 

algorithm for this system has yet to be developed. The studies 

employed different data collection and analysis methods. Lal 

et al. [30] used telephone interviews to assess the impact of 

mobile counselling, while S. K. Paul and Kumar [29] 

presented a case report. Nikam et al. [31] used usability testing 

to evaluate the user interface. 

C. WEARABLE AND SENSORS 

As shown in TABLE III, all studies in this category focused 

on measuring pressure distribution. S. Paul et al. [32] explored 

the usage of textiles with touch sensors integrated to monitor 

the physical health of leprosy patients. These textiles sense 

pressure and other mechanical stimuli to determine how 

patients interact with their surroundings. In a follow-up study, 

S. Paul et al. [33] developed a tactile sensing glove that 

measures the peak palmar pressure of leprosy patients. The 

glove’s sensors monitor pressure levels and identify high-risk 

locations for injuries and ulcers.  

A study by Gokhale [34] describes a method for using piezo 

crystal sensors to measure plantar pressure. The study 

describes the development and functioning of a sensor system 

that may be embedded in footwear to measure pressure 

distribution while walking. The system includes signal 

processing and data acquisition components. Similarly, 

Mazumder et al. [35] discuss the development of a wireless 

insole device that measures foot pressure during various 

activities. This system offers a graphical user interface for data 

viewing and wireless data transmission. 

 

 
TABLE 3 

Wearable and Sensor Technologies for Leprosy Monitoring 

Authors Device Objective Sensors Used Testing Method Key Findings 

S. Paul et al. [32] Sensor-
embedded 

gloves and 

socks 

Monitor nerve and 
muscle damage, 

measure pressure 

distribution, and 

prevent ulcers in 

leprosy patients. 

Tactile sensors 
(mechanoreceptors, 

thermoreceptors, 

nociceptors), LM35 

temperature sensor 

Patients wore gloves/socks 
during daily activities (e.g., 

cooking, farming), and 

pressure variations were 

recorded. Data was 

analyzed using 
microcontroller-based 

systems and statistical 

tools. 

Identified high-pressure 

areas prone to ulcers. 

http://ijahst.org/index.php/ijahst/index


International Journal of Advanced Health Science and Technology 
Multidisciplinary : Rapid Review : Open Access Journal                                   eISSN: 2808-6422: p-ISSN:3037 

 

Vol. 5 No.2, April 2025, pp:40-53                                                                                                          

 Homepage: ijahst.org                                     48 

Authors Device Objective Sensors Used Testing Method Key Findings 

S. Paul et al. [33] Tactile sensory 

glove with 

embedded 

pressure 

sensors 

Prevent ulcers and 

injuries in anesthetic 

hands of leprosy 

patients by 
monitoring pressure 

distribution. 

Flexi Force resistive 

sensors (thin-film 

force sensors) 

Sensors placed on 9 hand 

regions using a glove, 

measured pressure during 

daily activities (farming, 
biking, cooking, drinking), 

Pressure data analyzed. 

High-pressure areas 

identified for different 

activities, threshold set at 

70 kPa to prevent ulcers, 
real-time auditory 

feedback (buzzer) helps 

patients avoid prolonged 

pressure. 

Gokhale [34] Footwear with 

pressure 

sensors 
(piezocryst-al 

transducers) 

Design footwear to 

manage foot 

deformities and 
prevent ulcers in 

individuals with 

conditions like 

diabetes and leprosy 

Piezocrystal 

transducers, with 

pressure sensitivity 
range 500gm to 

10Kg 

Pressure measurements on 

foot regions while standing 

and walking. 

Higher pressure on heel 

and mid-foot in DN 

group, prolonged stance 
phase, useful for 

designing footwear for 

claw toes, flat feet, and 

leprosy. 

Mazumder et al. 

[35] 

Wireless insole 

pressure 

system 
integrated with 

capacitive 

pressure 

sensors. 

Develop a low-cost 

system to measure 

and analyze foot 
plantar pressure 

during physical 

activities. 

Capacitive pressure 

sensors placed at four 

key foot pressure 

points. 

Calibration with varying 

loads using UTM, 

followed by real-time 
testing with a subject 

wearing the insole during 

activities like walking and 

swaying. 

Sensor showed a linear 

response with low 

hysteresis. Insole system 
provided real-time 

pressure data with color-

coded feedback. 

aUTM = Universal Testing Machine. 

  

D. PUBLIC HEALTH INFORMATION SYSTEMS 

The National Leprosy Eradication Program (NLEP) in India 

developed Nikusth, an online reporting tool. Nikusth is based 

on the District Health Information Software 2 (DHIS 2) 

platform [16]. This system’s goals are to create a nationwide 

leprosy case database and to produce monthly and yearly 

reports. Data is first collected on paper forms and then 

manually entered into the Nikusth system by data entry 

operators. Data flows from PHCs to districts, then to blocks, 

and ultimately to the national level.  

The Anti-Leprosy Campaign (ALC), a part of Sri Lanka’s 

Ministry of Health, created the LeIS system [17]. This system 

combines a real-time GIS component with a web-based 

database (LeIS). Public health inspectors (LC-PHIs) use 

tablets to enter data directly into a web-based database, which 

offers near-real-time updates. LC-PHIs send data to district 

program managers. TABLE IV summarizes the public health 

information systems. 

 
TABLE 4 

Public Health Information Systems for Leprosy Surveillance 

System Used Country Overall Functionality Data Collection Method 
Accessible to Private 

Practitioners? 

Nikusth India Online reporting system; patient 

tracking; Used to generate monthly and 

annual reports. 

Paper-based initial data entry; 

manual data entry into the online 

system by DEOs. 

No 

LeIS Sri Lanka Real-time data entry via tablets, GIS 

integration, and a user-friendly 

dashboard for program managers. 

Real-time data entry by LC-PHIs 

using tablets; data from 

dermatology clinics. 

No 

aGIS = Geographic Information System, LC-PHIs = Leprosy Control Public Health Inspectors, DEOs = Data Entry Operators 

  

E. ADDITIONAL DIGITAL METHODS 

As detailed in TABLE V, two studies explored other uses 

outside of AI, mHealth, wearables and sensors, and public HIS 

that did not fall within the preceding categories. The study by 

Kumar et al. [36] focuses on the design and development of a 

computer-aided orthotic device for offloading plantar ulcers. 

The study uses computer-aided design (CAD) simulation to 

create lightweight, aesthetically appealing devices. Agrawal et 

al. [37] used image processing techniques (thresholding and 

contour detection) to automate bacterial counting in 44 leprosy 

skin smear images. Contour detection yielded more reliable 

bacterial counts than thresholding, with counts varying across 

different leprosy grading categories (3+ to 6+). 

IV. DISCUSSION 

The purpose of this scoping review was to identify and 

compile literature on digital health technologies related to 

leprosy in South Asia. We aimed to fill the gap in this area. 

This scoping review identified several leprosy-specific digital 

health advancements. AI-based methods mostly concentrated 

on classification models and image-based diagnostics. AI 

models typically obtained high accuracy (>90%) in classifying 

leprosy. Studies with mobile health and phone helplines 

revealed that basic devices like mobile phones could enhance  
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TABLE 5 
Summary of additional digital health methods identified 

Authors 

Subject 

Size/Dataset 

Size 

Objective Method Findings 

Kumar et al. [36] - Design a lightweight, 

customizable offloading 

device for improving 

patient compliance and 
aesthetic acceptance 

without compromising 

efficacy. 

2D sketches converted to 3D models 

using SolidWorks. Models tested with 

ANSYS to simulate pressure 

distribution. Pressure data was 

collected using tactile sensors. 

Eight models tested, with two 

designs selected for further 

development based on 

effectiveness, weight, and ease of 
assembly. Prototypes to be tested 

for long-term efficacy and 

mechanical behavior. 

Agrawal et al. 

[37] 

 

 

 

44 retrospective 

skin smear 

images from 

Schieffelin 

Institute 

Automate bacterial 

counting and grading for 

leprosy diagnosis, 

improving accessibility 

and efficiency. 

Global threshold segmentation and 

contour detection. SSIM and MSE for 

performance analysis. 

Better performance with contour 

detection vs. thresholding. Bacterial 

count ranges: 3+ (82-909), 4+ (115-

16712), 5+ (1743-2597), 6+ (6367-

15966) 

 

SSIM: Max = 0.89,  

Min = 0.52 

MSE: Min = 2138 

aSSIM = Structural Similarity Index Measure, MSE = Mean Squared Error 

 

patient communication and treatment compliance. Wearable 

and Sensor-based technology aids in tracking the effects of 

leprosy, such as nerve damage and ulcers. Public Health 

Information Systems for leprosy surveillance and case 

reporting have also been actively supported and used by 

authorities in India and Sri Lanka. 

The increasing use of AI and machine learning (ML) in 

medical diagnostics is reflected in the selected studies, which 

predominantly explored AI-driven leprosy detection. ML 

algorithms have been explored for leprosy classification using 

EHRs, with accuracy varying by classification criteria and 

dataset. CNNs have been applied to lesion images, while deep 

learning models have also been studied for severity prediction, 

though their real-world applicability remains dubious. 

Challenges such as dataset limitations, variations in 

classification methods, and the need for clinical validation 

remain. 

Studies have involved mostly using accessible clinical 

datasets for model training. Model performance and the ability 

to differentiate leprosy from other illnesses are influenced by 

the availability and diversity of datasets. Distinct leprosy types 

may also have distinct data distributions, with some 

circumstances being more represented than others. AI models 

show promise for classification and lesion detection but 

remain largely limited to algorithm development. Addressing 

dataset limitations may require strategies such as data sharing, 

collaboration and data augmentation to improve dataset 

diversity, while federated learning, and transfer learning could 

enhance model generalizability. Explainable AI (XAI) 

techniques, such as those used by A. K. Baweja et al. [20], may 

help improve model transparency and trustworthiness. 

Additionally, adhering to defined reporting criteria may 

improve the veracity of AI studies. 

As AI-based diagnostics advance, future research may look 

into their use in clinical settings. Addressing variances 

in healthcare environments may be necessary for their 

incorporation into clinical practice. The healthcare systems in 

South Asia vary greatly; some regions have strong programs 

for neglected tropical diseases, while others struggle with a 

lack of resources and infrastructure. AI-based technologies 

could supplement current leprosy management strategies, 

especially in areas where access to specialists is limited. For 

example, AI-based diagnostic support might be integrated into 

telemedicine platforms, which allows primary healthcare 

workers to use automated assessments to make decisions. AI 

models trained on electronic health records (EHRs) may help 

with risk assessment, while text-mining algorithms may aid 

with medical record information retrieval and interpretation 

[26]. 

Interventions in mobile health (mHealth) have shown 

promise in promoting treatment compliance, improving 

patient engagement, and assisting early identification of 

leprosy signs. Simple strategies, involving toll-free calls have 

been effectively used to improve patient follow-up and 

remove geographic or financial obstacles to care. In parallel, 

the emergence of AI-integrated mobile applications opens up 

prospects for improving diagnostic efficiency and 

accessibility. The growing use of smartphones presents a great 

opportunity to include automated diagnostic support in digital 

health strategies. These applications, however, are still at the 

conceptual stage and need real-world implementation studies 

and clinical validation. Medical practitioners who are used to 

conventional, face-to-face consultations could be reluctant to 

embrace digital alternatives. 

AI-based mobile health applications offer the advantage of 

scalability and adaptability, which makes them well-suited for 
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deployment in low-resource settings. Mobile apps can be 

optimized for low-end Android devices to ensure broader 

usability, while local language chatbots and voice-assisted AI 

features may improve accessibility for those with low literacy 

levels. Automation and clinical supervision could be balanced 

via the use of hybrid models, in which patients self-evaluate 

while medical professionals verify the results. For example, 

the K Health app [38] during the COVID-19 pandemic 

combined self-assessment, AI-driven symptom checks, and 

remote physician consultations. Offline functionality may 

increase accessibility, as seen in SKINAPP [39], which allows 

healthcare workers to access essential disease information 

without an internet connection. For South Asia, comparable 

offline-compatible mobile health tools might be investigated, 

that allow community health workers to obtain treatment 

recommendations in isolated locations. 

Additionally, Wearable and Sensor technology may offer 

an effective method to monitor and prevent impairments in 

leprosy patients, mainly by identifying irregularities in 

pressure distribution that may cause ulceration. These 

approaches seek to provide early warning of possible hazards. 

This effort eventually promotes self-care practices. Plantar and 

palmar pressure have been measured using methods, like 

tactile detecting textiles, wireless insole sensors, and piezo 

crystal sensors. Sensor durability, data accuracy, and usability 

are critical for long-term usefulness. To guarantee that devices 

are utilized efficiently, training is also required for patients and 

healthcare professionals. Users may need continuous 

education and support to understand and act upon the feedback 

they get.  

Digital technologies offer the potential to improve leprosy 

surveillance by easing data collection, transmission, and 

analysis. The shift from paper-based to totally digital reporting 

is an ongoing issue. Many areas still use manual data entry, 

which causes mistakes and delays. These systems as 

implemented in the public sector, are inaccessible to private 

sector healthcare workers. Since private-sector health data is 

not directly incorporated into official public health systems, 

interoperability issues also hinder the efficacy of these 

systems. LeIS’s reliance on internet connectivity and tablet 

computers may limit its applicability in areas with poor 

infrastructure. Nikusth’s paper-based initial data entry reduces 

its dependence on technology but may introduce delays and 

potential data loss. Most AI-based studies focused on 

retrospective analysis. Mobile health interventions were 

primarily designed to facilitate communication between 

patients and healthcare providers. Sensor-based technologies 

have been tested in controlled environments. Systems like 

Nikusth and LeIS were government-led initiatives for disease 

surveillance. 

The distribution of studies across different categories was 

uneven. A large proportion of the included studies explored AI 

and machine learning techniques. This may reflect a growing 

research interest in AI applications for diagnosis, while other 

digital health approaches appear less frequently studied in 

recent years.  

The identified studies show both similarities and 

differences when compared to interventions for other 

neglected tropical diseases (NTDs). For tuberculosis mhealth, 

while there are obvious parallels between patient engagement 

strategies and telecounseling, there are also notable variances 

in terms of implementation level, focus, and difficulties 

encountered. Compared to leprosy, mobile health for TB have 

been more developed and extensively researched [48]. When 

comparing findings to scabies interventions, they have similar 

goals and focus but may differ in technological usage and 

integration. More broadly, the findings presented by 

Barnowska et al. [49] show that scabies and leprosy often co-

occur in studies on digital health.  

Few studies evaluate the long-term viability of these 

technologies in practical contexts; most concentrate on model 

development or pilot implementations. Future studies might 

explore the scalability and cost-effectiveness of digital health 

in leprosy prevalent regions. Research on user acceptance, 

among patients and healthcare professionals, may shed light 

on the factors that encourage and hinder the use of leprosy 

specific digital health. 

Many rural regions in South Asia still experience issues 

with internet connectivity and reliable electricity [40], [41]. It 

may be possible to modify digital health tools to operate within 

current limitations rather than depending on extensive 

infrastructural improvements. For example, a telemedicine 

initiative in Lucknow, India used local doctors as 'carrying 

agents' to facilitate consultations in spite of network 

difficulties [42]. Similarly, a study in Bangladesh has 

investigated the use of low-cost telemedicine hardware using 

Arduino and Raspberry Pi for reasonably priced remote 

diagnostics [43]. In rural Liberia, an offline Bluetooth-based 

data transfer system was created to facilitate communication 

among community health workers [44]. Given that leprosy-

affected regions in South Asia may face similar obstacles, 

future studies could look into whether lightweight, 

decentralized digital health models can be adopted for leprosy. 

Future research could also explore the long-term impact of 

mobile health applications on patient adherence, engagement, 

and health outcomes. Additionally, longitudinal studies on 

wearable technologies could provide insights into their real-

world adoption, usability, and effectiveness. Furthermore, 

tele-education initiatives could contribute to improving 

leprosy management by training healthcare workers and 

raising community awareness. Digital learning approaches 

may be possible, as evidenced by the inclusion of online 

training for healthcare workers in India's National Leprosy 

Eradication Programme (NLEP) [45]. 

Bangladesh, Nepal and Sri Lanka are underrepresented in 

digital health research for leprosy, which suggests a need for 

further regional collaboration. Cross-country collaborations 

and comparative studies may help to close this gap. Initiatives 

such as the RESPIRE collaboration [46], which supported 
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multi-country health research, could serve as a model for 

advancing interventions for leprosy. A relevant example is 

NLR Nepal’s partnership with local, provincial, and national 

governments [47], which has successfully implemented the 

Leprosy Post-Exposure Prophylaxis (LPEP) pilot to improve 

early detection and preventive treatment. Similar collaborative 

frameworks might be investigated. 

A. LIMITATIONS OF THIS SCOPING REVIEW  

As a scoping review, this study aims to map existing evidence 

rather than assess study quality or effectiveness. A formal risk-

of-bias assessment was not conducted, and studies were not 

critically appraised for methodological rigor. Findings should 

therefore be viewed as an overview of available evidence.The 

search strategy primarily relied on electronic databases, which 

may have excluded relevant literature not indexed in these 

sources. Additionally, the review focused on English language 

publications, possibly overlooking important research 

published in regional South Asian languages. This review did 

not include much grey literature, such as NGO reports, non-

scholarly publications, or overlooked government health 

initiatives, which might have provided valuable 

implementation insights. Omitting these sources may have led 

to an incomplete representation of digital health activities in 

the region. Future reviews may expand coverage by 

systematically searching grey literature repositories and 

reviewing NGO or government reports on digital health 

projects. Although the review aimed to cover South Asia as a 

whole, most included studies were from India. While this 

focus is expected, further research is recommended to expand 

beyond India and include perspectives from countries such as 

Bangladesh, Nepal, Sri Lanka, and Pakistan. It is also possible 

that relevant digital health interventions exist in other South 

Asian countries, but are underreported in indexed literature. 

Expanding research efforts to these regions through regional 

studies may provide a more comprehensive understanding. 

 While telemedicine is a critical component of digital 

health, this review did not include telemedicine-specific 

studies for leprosy from South Asia, as the only available 

research was from 2001 and 2005 [53], [54]. The exclusion 

was necessary to focus on recent developments, but it 

highlights a notable research gap.  

Unlike a systematic review, this study does not include a 

meta-analysis or statistical synthesis of digital health 

interventions. While some studies reported quantitative 

metrics, the heterogeneity of study designs made it impractical 

to aggregate results. 

V. CONCLUSION  

This scoping review mapped the available literature on digital 

health interventions for leprosy from South Asia. The 

reviewed studies show diverse applications, with AI-based 

diagnostic tools showing high accuracy, mobile health 

interventions facilitating patient communication, wearable 

and sensor technologies being explored for monitoring nerve 

damage and ulcer prevention, and public health information 

systems for disease surveillance. AI-driven diagnostics have 

received significant attention, while other areas remain less 

explored, with most research concentrated in India.
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