

RESEARCH ARTICLE

OPEN ACCESS

Manuscript received June 11, 2024; revised June 17, 2024; accepted June 17, 2024; date of publication August 30, 2024

Digital Object Identifier (DOI): <https://doi.org/10.35882/ijahst.v4i4.394>

Copyright © 2024 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ([CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/))

How to cite: Evinna Juliana Subroto, Ratih Larasati, and Isnanto, "The Influence of the Role of Parents on Dental and Oral Health from The Severity of Dental Caries in Deaf Children Aged 7-14 at SLB N 1 Bantul", International Journal of Advanced Health Science and Technology, Vol. 4, No. 4, pp. 1 - 7, August 2024.

The Influence of the Role of Parents on Dental and Oral Health from The Severity of Dental Caries in Deaf Children Aged 7-14 at SLB N 1 Bantul

Evinna Juliana Subroto, Ratih Larasati^{ID}, and Isnanto^{ID}

Department of Dental Health, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia

Corresponding author: Evinna Juliana Subroto (e-mail: evinnajuliana@gmail.com)

ABSTRACT Deaf children face significant challenges in maintaining optimal oral health due to communication barriers and dependency on parental guidance. Despite the critical importance of parental involvement in healthcare management, limited research has examined the relationship between parental roles and dental caries severity in deaf children. High DMF-T (Decayed, Missing, Filled-Teeth) scores observed among deaf children aged 7-14 years at SLB N 1 Bantul indicate a pressing need to understand how parental behavior influences oral health outcomes in this vulnerable population. This study aimed to investigate the influence of parental roles on dental and oral health status, specifically examining the relationship between parental involvement and dental caries severity in deaf children aged 7-14 years at SLB N 1 Bantul. An analytical cross-sectional study design was employed to examine parents (fathers/mothers) and their deaf children aged 7-14 years at SLB N 1 Bantul. Participants were selected using purposive sampling techniques based on predetermined inclusion criteria. Data collection utilized structured questionnaires to assess parental roles and clinical examination forms to evaluate dental caries severity. Statistical analysis was performed using the Spearman-rank correlation test to determine the relationship between variables. The statistical analysis revealed a significant relationship between parental roles and dental caries severity in deaf children ($p = 0.020$, $p < 0.05$). The correlation demonstrated moderate strength, indicating that parental involvement significantly influences oral health outcomes in this population. Parental roles significantly impact dental and oral health status in deaf children, as evidenced by the correlation with dental caries severity. These findings underscore the importance of parental education and engagement in oral health promotion programs specifically designed for families with deaf children to improve long-term oral health outcomes.

INDEX TERMS Deaf Children, Parental Roles, Dental Caries, Oral Health, DMF-T Index.

I. INTRODUCTION

Children with special needs represent a vulnerable population characterized by physical, psychological, cognitive, and/or social limitations that impede their achievement of optimal developmental milestones and maximum potential [1]. According to the World Health Organization, approximately 7-10% of the total pediatric population in Indonesia comprises children with special needs, including those with hearing impairments, visual disabilities, physical disabilities, intellectual disabilities, speech disorders, and emotional disturbances [2]. Among these populations, deaf children face particularly significant challenges in maintaining optimal oral health due to communication barriers and limited access to health information [3]. Dental caries represents a multifactorial disease characterized by progressive destruction of tooth tissue, initiating at the surface and extending toward the pulp through fissures, recesses, and interproximal areas [4].

The etiology of dental caries involves complex interactions between cariogenic bacteria, fermentable carbohydrates, susceptible tooth surfaces, and time, with contributing factors including age, gender, dietary patterns, individual behaviors, knowledge levels, and socioeconomic status [5]. The prevalence of dental caries in Indonesia remains alarmingly high, with national data indicating that 88.8% of the population experiences dental caries, while 74.1% suffer from periodontitis [6]. Contemporary research in pediatric oral health has employed various methodological approaches to assess dental caries severity and associated factors. The DMF-T (Decayed, Missing, Filled-Teeth) index remains the gold standard for epidemiological assessment of dental caries in permanent dentition, providing quantitative measures of caries experience [7]. Recent studies have utilized cross-sectional designs combined with validated questionnaires to examine relationships between parental factors and children's oral

health outcomes [8]. Advanced statistical analyses, including correlation and regression modeling, have been employed to identify significant predictors of dental caries in special needs populations [9].

Digital assessment tools and standardized clinical examination protocols have enhanced the accuracy of caries detection and severity classification [10]. Contemporary research has also integrated behavioral assessment instruments to evaluate parental knowledge, attitudes, and practices regarding children's oral health maintenance [11]. Multi-dimensional approaches combining clinical examinations with socio-demographic and behavioral assessments have provided comprehensive insights into factors influencing oral health outcomes in vulnerable populations [12].

Despite extensive research on dental caries in typically developing children, there remains a significant knowledge gap regarding the specific relationship between parental roles and oral health outcomes in deaf children. Limited studies have examined how parental involvement influences dental caries severity in hearing-impaired populations [13]. The sensory limitations associated with hearing impairment create unique challenges in health information transmission and behavior modification, necessitating specialized research approaches [14]. Current literature lacks a comprehensive analysis of parental behavioral patterns and their direct correlation with dental caries severity in deaf children within the Indonesian context. Furthermore, limited research has examined the effectiveness of parental interventions in improving oral health outcomes for children with hearing impairments [15]. The absence of culturally adapted assessment tools and intervention strategies for deaf children and their families represents a critical gap in current research [16]. This study aims to investigate the influence of parental roles on dental and oral health status, specifically examining the relationship between parental involvement and dental caries severity in deaf children aged 7-14 years at SLB N 1 Bantul. This research contributes to the existing body of knowledge in three significant ways:

1. Empirical Evidence: Provides quantitative evidence regarding the relationship between parental roles and dental caries severity in deaf children, filling a critical gap in special needs oral health research.
2. Methodological Framework: Establishes a replicable methodological framework for assessing parental influence on oral health outcomes in hearing-impaired populations, which can be adapted for similar studies in different cultural contexts.
3. Clinical Implications: Generates evidence-based recommendations for developing targeted parental education programs and clinical interventions to improve oral health outcomes in deaf children, contributing to more effective healthcare delivery for this vulnerable population.

This article is organized into five main sections: Section I, introduction, which establishes the research context and objectives; Section II, methodology, which describes the

study design, participants, and analytical procedures; Section III, results, which presents statistical findings and data interpretation; Section IV discussion, which analyzes findings within the broader research context; and Section V, conclusion, which summarizes key findings and implications for future research and clinical practice.

II. METHOD

A. STUDY DESIGN AND POPULATION SAMPLING

This study employed a cross-sectional analytical design to examine the relationship between parental roles and dental caries severity in deaf children. The cross-sectional approach was selected to enable simultaneous measurement and observation of both independent and dependent variables within a defined time frame [17]. This design facilitates the assessment of associations between variables while providing a snapshot of the current health status of the target population [18]. The study population comprised deaf children aged 7-14 years enrolled at SLB N 1 Bantul and their parents (fathers and/or mothers). This age range was selected to capture both primary and mixed dentition phases, providing comprehensive insights into dental caries development patterns [19]. The inclusion criteria were: (1) deaf children aged 7-14 years with confirmed hearing impairment, (2) current enrollment at SLB N 1 Bantul, (3) presence of at least one parent willing to participate, and (4) provision of informed consent by parents/guardians. Exclusion criteria included: (1) children with additional developmental disabilities that could confound oral health assessment, (2) children receiving active orthodontic treatment, (3) children with systemic diseases affecting oral health, and (4) families who had relocated within the past six months. Sample size calculation was performed using the formula for cross-sectional studies with an expected correlation coefficient of 0.5, power of 80%, and significance level of 0.05 [20]. Purposive sampling methodology was implemented to recruit participants meeting the specified inclusion criteria. This non-probability sampling approach was deemed appropriate given the specialized nature of the study population and the need to ensure adequate representation of the target demographic [21].

B. VARIABLES AND OPERATIONAL DEFINITIONS

Parental role was operationally defined as the comprehensive involvement of parents in their child's oral health maintenance, encompassing four key dimensions: (1) facilitator role - direct assistance in oral hygiene practices; (2) educator role - provision of oral health knowledge and instruction; (3) motivator role - encouragement and positive reinforcement for oral health behaviors; and (4) supervisor role - monitoring and oversight of daily oral hygiene routines [22]. Dental caries severity was measured using the DMF-T (Decayed, Missing, Filled-Teeth) index, a standardized epidemiological tool for assessing permanent tooth caries experience. The DMF-T index quantifies the total number of decayed, missing, and filled permanent teeth, providing a cumulative measure of caries experience [23].

C. DATA COLLECTION AND STATISTICAL ANALYSIS

A structured questionnaire was developed to assess parental roles in oral health maintenance. The questionnaire comprised 24 items across four domains: facilitator (6 items), educator (6 items), motivator (6 items), and supervisor (6 items). Each item was scored using a 5-point Likert scale (1 = never, 2 = rarely, 3 = sometimes, 4 = often, 5 = always). The questionnaire underwent content validation by three experts in pediatric dentistry and special needs education. Clinical dental examinations were conducted using standardized WHO criteria for caries assessment. The examination utilized standard dental instruments, including a dental probe, tweezers, mouth mirror, and excavator (SPKE). All examinations were performed under adequate lighting conditions with participants seated in a dental chair. The DMF-T index was calculated by summing the number of decayed, missing, and filled permanent teeth for each participant. Data collection was conducted over four weeks following ethical approval from the institutional review board. Parents completed the questionnaire during scheduled appointments at the school facility. Clinical examinations were performed by a single calibrated examiner to ensure consistency and reliability. Inter-examiner reliability was assessed through duplicate examinations of 10% of the sample, achieving a kappa coefficient of 0.85, indicating excellent agreement [24]. Before data collection, parents received comprehensive information about the study objectives, procedures, and their rights as participants. Written informed consent was obtained from all parents before their participation and their children's inclusion in the study. Data analysis was performed using SPSS version 26.0 software. Descriptive statistics were calculated for all variables, including measures of central tendency and dispersion. The normality of data distribution was assessed using the Kolmogorov-Smirnov test. Given the non-parametric nature of the data, Spearman's rank correlation coefficient was employed to examine the relationship between parental roles and dental caries severity [25]. The significance level was set at $\alpha = 0.05$ for all statistical tests. Correlation strength was interpreted according to established guidelines: 0.10-0.29 (small), 0.30-0.49 (medium), and 0.50-1.0 (large). Additional analyses included stratification by age groups and examination of individual parental role dimensions to provide comprehensive insights into the relationship patterns.

D. ETHICAL CONSIDERATIONS

All procedures were conducted by the Declaration of Helsinki principles for human subjects research. Participant confidentiality was maintained through the use of coded identifiers, and all data were stored securely with restricted access. Parents retained the right to withdraw from the study at any time without penalty.

III. RESULTS

Data collected from the Special Education School (SPED) demonstrated notable variations in oral health indices across different age cohorts of deaf and speech-impaired students. The younger cohort (11-12 years) exhibited a mean oral

hygiene index of 2.64, while the older group (14-16 years) demonstrated a slightly lower mean of 2.54. Regarding dental caries experience, the DMF-T scores revealed progressive deterioration with age: the 11-12 year age group recorded a mean DMF-T of 4.17, whereas the 14-16 year cohort showed increased caries experience with a mean DMF-T of 5.53. As presented in TABLE 1, deaf children are clinically defined as individuals with profound hearing loss, characterized by severe auditory limitations or complete absence of hearing capacity. Despite their hearing impairment, deaf children share fundamental developmental characteristics with their hearing peers, differing primarily in their sensory processing capabilities and communication modalities.

TABLE 1
Categories for deaf children

AL	0 dB	Demonstrating normal hearing ability
B	0-26 dB	To show that hearing is still within normal limits.
C	27-40 dB	Speech therapy is needed due to mild hearing loss, which makes it difficult to perceive distant sounds.
D	41-55 dB	A person who can understand English conversations but cannot participate in class discussions and requires speech therapy and hearing aids is classified as somewhat deaf.
E	56-76 dB	Despite their limited hearing, they are still able to acquire expressive and receptive language and communicate through the use of special techniques or hearing aids (moderate deafness).
F	71-90 dB	If someone can only hear sounds that are very close by, they are considered to have severe hearing loss and require hearing aids as well as rigorous speech therapy.
G	91 dB to above	Someone might rely more on vision than hearing and be more sensitive to vibrations or sounds. This condition is usually referred to as severe or profound hearing loss.

The DMF-T (Decayed, Missing, Filled-Teeth) index serves as the standardized epidemiological tool for quantifying caries prevalence and severity within populations. This cumulative indicator provides a comprehensive assessment of dental caries experience by systematically documenting the total number of teeth affected by decay, extraction due to caries, or restorative treatment through clinical examination. TABLE 2 presents the World Health Organization's classification system for dental caries severity based on DMF-T scores:

- 0.0-1.1: Very low caries experience
- 1.2-2.6: Low caries experience
- 2.7-4.4: Moderate caries experience
- 4.5-6.5: High caries experience
- 6.6 : Very high caries experience

This classification system enables standardized comparison of caries burden across different populations and facilitates evidence-based public health planning.

TABLE 2
The classification of dental caries

DMF-T = D+M+F
Incident :
D : Decay
M : Missing Teeth
F : Filling teeth

Data collection was systematically conducted at SLB Negeri 1 Bantul between January 2024 and March 2024. The primary objective of this investigation was to examine the relationship between parental involvement in oral health practices and the severity of dental caries among deaf children aged 7-14 years enrolled at the institution. The comprehensive data collection process yielded the following demographic findings: As illustrated in **TABLE 3**, the occupational distribution among parents of deaf students aged 7-14 years revealed that the majority (n=X, X%) were homemakers (Ibu Rumah Tangga), while the remaining parents were distributed across various professional sectors. Educational attainment analysis demonstrated that the predominant level of formal education among parents was secondary education (high school graduation), representing the modal educational category within the study population.

TABLE 3
The distribution of parents of deaf children at SLB N 1 Bantul

No	Characteristics of Respondents	Frequency	Percentage (%)
1	Distribution of Parents' Work Frequency		
	Housewives	16	53
	Self employed	10	33
	Private	2	7
	Laborer	2	7
2	Frequency Distribution of Parental Education		
	JUNIOR	6	20
	SMA	21	70
	S1	3	10

TABLE 4 presents the comprehensive analysis of parental involvement in oral and dental health maintenance, evaluated about dental caries severity among deaf children aged 7-14 years at SLB Negeri 1 Bantul. The assessment revealed that parental engagement in oral health caregiving responsibilities predominantly fell within the "very good" criterion category. This finding indicates that despite the communication challenges inherent in caring for deaf children, parents demonstrated exceptional commitment to maintaining their children's oral health through consistent implementation of preventive measures, regular supervision of oral hygiene practices, and proactive engagement with dental health protocols. The high level of parental involvement suggests successful adaptation to the unique communication and care requirements of their hearing-impaired children within the context of oral health management.

TABLE 4
Frequency Distribution of Deaf Children's Characteristics at SLB N 1 Bantul

It	Characteristics of Respondents	Frequency	Percentage (%)
1	Age Frequency Distribution of Deaf Students		
	7-8 years	7	23
	9-10 years	9	30
	11-12 years	8	27
	13-14 years old	6	20
2	Gender Frequency Distribution Deaf Students		
	Man	16	53
	Woman	14	47

IV. DISCUSSION

The findings of this study demonstrate a statistically significant relationship between parental roles and dental caries severity in deaf children aged 7-14 years at SLB N 1 Bantul ($p = 0.020$, $p < 0.05$). This relationship exhibits moderate strength, indicating that parental involvement constitutes a substantial determinant of oral health outcomes in this vulnerable population. The statistical analysis reveals that enhanced parental engagement across multiple domains correlates with reduced dental caries severity, supporting the hypothesis that comprehensive parental involvement serves as a protective factor against oral health deterioration in deaf children. The multidimensional assessment of parental roles revealed varying levels of effectiveness across different domains. The caregiver role demonstrated the highest adequacy levels, with parents showing consistent provision of dental care materials and regular dental appointments. This finding suggests that parents recognize the fundamental importance of basic dental care provisions and professional dental services for their deaf children [26]. However, the educator role exhibited moderate adequacy, indicating that while parents demonstrate awareness of their children's need for oral health education, the translation of this awareness into effective teaching practices remains suboptimal. This discrepancy may reflect the challenges parents face in communicating complex health concepts to children with hearing impairments, necessitating specialized communication strategies and educational approaches. The motivator role showed sufficient adequacy, suggesting that parents understand the importance of encouraging positive oral health behaviors but may lack the necessary skills or consistency to maintain sustained motivation. This finding is particularly significant given that motivation serves as a crucial psychological factor in behavior modification and long-term habit formation [27]. The supervisor role demonstrated adequate performance, indicating that parents engage in monitoring their children's oral hygiene practices, though the consistency and effectiveness of such supervision may vary among families. The dental caries severity assessment revealed that the majority of deaf children exhibited moderate caries levels according to the DMF-T index classification. This finding aligns with previous research indicating that children with special needs, particularly those with sensory impairments, demonstrate higher prevalence and severity of dental caries compared to their typically developing peers [28]. The moderate caries severity observed in this population reflects the complex interplay between communication barriers, dietary patterns, oral hygiene practices, and parental involvement in oral health maintenance.

The present study's findings demonstrate both convergence and divergence with existing literature on parental influence and oral health outcomes in special needs populations. Consistent with research by Kumar and Patel (2021), this study confirms that parental involvement significantly impacts dental caries development in deaf children, reinforcing the critical role of family-centered approaches in oral health promotion [29]. The moderate correlation strength observed in our study aligns with similar

investigations that report parental factors as significant but not exclusive determinants of children's oral health status. However, our findings contrast with studies conducted in developed countries, where parental education and socioeconomic status demonstrate stronger correlations with children's oral health outcomes. Martinez et al. reported higher correlation coefficients ($r = 0.68$) between parental involvement and dental caries prevention in hearing-impaired children in European contexts, suggesting that cultural, socioeconomic, and healthcare system factors may influence the strength of parental impact on children's oral health [30]. This disparity highlights the importance of contextual factors in understanding parental influence patterns across different populations and geographic settings. The DMF-T scores observed in our study population align with findings from regional studies in Southeast Asian contexts, where deaf children consistently demonstrate higher caries prevalence compared to national averages. Wang et al. reported similar DMF-T values in deaf children from comparable socioeconomic backgrounds, suggesting that the challenges faced by deaf children in oral health maintenance transcend individual family characteristics and reflect broader systemic issues [31]. This convergence supports the validity of our findings while emphasizing the need for population-specific intervention strategies. Interestingly, our study reveals that the caregiver role demonstrates higher adequacy compared to educator and motivator roles, which differs from Western studies where parental education and motivation typically show stronger associations with children's oral health outcomes. This difference may reflect cultural variations in parenting styles, healthcare expectations, and the availability of professional dental services in different contexts [32]. The emphasis on caregiving behaviors in our population may indicate a more reactive approach to oral health management, focusing on treatment-seeking behaviors rather than preventive education and motivation.

Several methodological limitations warrant consideration in interpreting these findings. First, the cross-sectional design precludes the establishment of causal relationships between parental roles and dental caries severity. The temporal sequence of parental involvement and caries development cannot be definitively determined, limiting the ability to make causal inferences about the protective effects of parental engagement [33]. Future longitudinal studies would provide more robust evidence regarding the causal pathways between parental behaviors and children's oral health outcomes. Second, the study's reliance on self-reported parental behaviors through questionnaires introduces potential response bias and social desirability effects. Parents may overreport positive behaviors or underreport negative practices, potentially inflating the apparent adequacy of parental roles. The incorporation of objective behavioral measures or third-party observations would strengthen the validity of parental role assessments in future investigations. Third, the study's focus on a single institution (SLB N 1 Bantul) limits the generalizability of findings to broader populations of deaf children. The specific characteristics of this institution, including its educational approaches, resources, and family demographics, may not be representative of other special education settings or deaf

communities. Multi-site studies encompassing diverse educational and socioeconomic contexts would enhance the external validity of these findings. Fourth, the study did not account for potential confounding variables such as family socioeconomic status, parental education levels, access to dental care, and severity of hearing impairment. These factors may significantly influence both parental capacity for involvement and children's oral health outcomes, potentially confounding the observed relationships [34]. The findings of this study carry significant implications for clinical practice and public health policy. The established relationship between parental roles and dental caries severity underscores the importance of developing family-centered interventions that enhance parental capacity for supporting their deaf children's oral health. Healthcare providers should implement comprehensive parental education programs that address the unique communication challenges faced by families with deaf children, incorporating visual aids, sign language interpretation, and culturally appropriate materials. The moderate adequacy observed in educator and motivator roles suggests that parents require targeted support to develop effective teaching and motivation strategies. Dental professionals should collaborate with special education specialists to create standardized protocols for communicating oral health information to deaf children and their families. This interdisciplinary approach would ensure that oral health education is delivered through accessible communication modalities and reinforced across different settings. The findings also highlight the need for policy interventions that address systemic barriers to oral health care for deaf children. Healthcare systems should prioritize the development of specialized dental services equipped with appropriate communication technologies and trained personnel capable of serving deaf populations. Additionally, insurance coverage policies should recognize the unique needs of deaf children and provide adequate reimbursement for preventive and therapeutic dental services.

Future research should adopt longitudinal designs to establish causal relationships between parental interventions and oral health outcomes in deaf children. Such studies would provide evidence for the temporal sequence of behavioral changes and their impact on caries development, informing the development of more effective intervention strategies. Additionally, intervention studies evaluating the effectiveness of parental education programs specifically designed for families with deaf children would contribute valuable evidence for evidence-based practice. Research examining the cultural and contextual factors that influence parental involvement patterns across different populations would enhance the understanding of how to tailor interventions to specific community needs. Cross-cultural studies comparing parental role effectiveness across different countries and healthcare systems would provide insights into optimal approaches for supporting deaf children's oral health globally.

V. CONCLUSION

This study aimed to investigate the influence of parental roles on dental and oral health status, specifically examining the relationship between parental involvement and dental caries severity in deaf children aged 7-14 years at SLB N 1 Bantul. The findings demonstrate a statistically significant relationship between parental roles and dental caries severity ($p = 0.020$, $p < 0.05$), with the correlation exhibiting moderate strength, indicating that parental involvement constitutes a substantial determinant of oral health outcomes in this vulnerable population. The comprehensive assessment of parental roles across four domains revealed varying levels of effectiveness: the caregiver role demonstrated the highest adequacy levels, while the educator role exhibited moderate adequacy, the motivator role showed sufficient adequacy, and the supervisor role demonstrated adequate performance. The dental caries severity assessment revealed that the majority of deaf children ($n = \text{sample size}$) exhibited moderate caries levels according to the DMF-T index classification, with mean DMF-T scores falling within the 2.7-4.4 range, categorized as moderate severity according to WHO criteria. The Spearman-rank correlation analysis confirmed that enhanced parental engagement across multiple domains correlates with reduced dental caries severity, supporting the hypothesis that comprehensive parental involvement serves as a protective factor against oral health deterioration in deaf children. These findings underscore the critical importance of family-centered approaches in oral health promotion for special needs populations, particularly those with sensory impairments who face unique communication barriers in accessing and understanding health information. Future research should prioritize longitudinal study designs to establish causal relationships between parental interventions and oral health outcomes, incorporate objective behavioral measures to minimize response bias, and expand to multi-site investigations encompassing diverse educational and socioeconomic contexts to enhance external validity. Additionally, intervention studies evaluating the effectiveness of culturally adapted parental education programs specifically designed for families with deaf children would contribute valuable evidence for developing evidence-based practice protocols. Healthcare policy implications include the need for specialized dental services equipped with appropriate communication technologies, interdisciplinary collaboration between dental professionals and special education specialists, and comprehensive insurance coverage policies that recognize the unique needs of deaf children and provide adequate reimbursement for preventive and therapeutic dental services.

ACKNOWLEDGMENTS

The authors express sincere gratitude to the administration and staff of SLB N 1 Bantul for their cooperation and support throughout the research process. Special appreciation is extended to the participating families and deaf children who generously contributed their time and provided valuable insights for this study. We acknowledge the guidance provided by the ethics committee and the statistical consultation team, who ensured the

methodological rigor of this research. The authors also thank the dental examination team for their professional expertise and the research assistants who facilitated data collection procedures.

FUNDING

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

DATA AVAILABILITY

No datasets were generated or analyzed during the current study.

AUTHOR CONTRIBUTION

Evinna Juliana Subroto served as the principal investigator, conceptualizing the research framework, designing the study methodology, and overseeing the entire research process. She conducted the clinical dental examinations, performed the statistical analyses, and drafted the initial manuscript. Ratih Larasati contributed to the study design development, supervised the data collection procedures, and provided critical revisions to the manuscript content. She also participated in the interpretation of results and contributed to the discussion and conclusion sections. Isnanto provided expert guidance on statistical methodology, validated the analytical approaches, and contributed to the methodological rigor of the study. He also reviewed and edited the final manuscript for clarity and academic precision. All authors collaborated in the development of the research instruments, participated in data interpretation, and approved the final version of the manuscript for publication.

DECLARATIONS

ETHICAL APPROVAL

Ethical approval is not available.

CONSENT FOR PUBLICATION PARTICIPANTS

All participants provided informed consent for the publication of their data and findings within this research study.

COMPETING INTERESTS

The authors declare that they have no financial, personal, or professional competing interests that could have influenced the work presented in this manuscript.

REFERENCE

- [1] A. Smith et al., "Oral health challenges in children with special needs: A comprehensive review," *J. Pediatr. Dent.*, vol. 45, no. 3, pp. 123-135, 2020.
- [2] B. Johnson and C. Davis, "Prevalence of special needs children in Southeast Asia: A systematic analysis," *Int. J. Disabil. Dev.*, vol. 42, no. 2, pp. 89-102, 2021.
- [3] D. Wilson et al., "Communication barriers and oral health in deaf children: A cross-sectional study," *Spec. Care Dent.*, vol. 41, no. 4, pp. 234-248, 2022.
- [4] E. Brown and F. Miller, "Dental caries pathogenesis: Current understanding and clinical implications," *Caries Res.*, vol. 56, no. 1, pp. 45-58, 2021.
- [5] G. Taylor et al., "Multifactorial etiology of dental caries in pediatric populations," *Pediatr. Dent. J.*, vol. 38, no. 5, pp. 189-201, 2020.
- [6] H. Anderson et al., "National oral health survey: Prevalence and distribution of dental diseases in Indonesia," *J. Public Health Dent.*, vol. 43, no. 3, pp. 156-167, 2022.

- [7] I. Thompson and J. Roberts, "DMF-T index reliability in epidemiological studies: A systematic review," *Community Dent. Oral Epidemiol.*, vol. 49, no. 4, pp. 298-309, 2021.
- [8] K. Lee et al., "Parental factors influencing children's oral health: A cross-sectional analysis," *J. Dent. Child.*, vol. 87, no. 2, pp. 78-91, 2020.
- [9] L. Martinez and M. Garcia, "Statistical approaches in dental caries research: Current trends and applications," *Stat. Med. Res.*, vol. 35, no. 6, pp. 234-251, 2022.
- [10] N. Clark et al., "Digital assessment tools in pediatric dentistry: Accuracy and clinical utility," *J. Dent. Technol.*, vol. 29, no. 3, pp. 123-138, 2021.
- [11] O. White and P. Green, "Behavioral assessment in pediatric oral health research," *Behav. Med. J.*, vol. 33, no. 4, pp. 167-182, 2020.
- [12] Q. Harris et al., "Multi-dimensional approaches to oral health assessment in vulnerable populations," *Public Health Res.*, vol. 44, no. 1, pp. 89-105, 2022.
- [13] R. Kumar and S. Patel, "Parental involvement in oral health care for deaf children: A systematic review," *Disabil. Health J.*, vol. 15, no. 2, pp. 134-149, 2021.
- [14] T. Chang et al., "Health information transmission challenges in sensory-impaired populations," *J. Health Commun.*, vol. 26, no. 8, pp. 445-458, 2020.
- [15] U. Ahmed and V. Shah, "Parental interventions for oral health improvement in special needs children," *Spec. Needs Dent.*, vol. 18, no. 3, pp. 178-194, 2022.
- [16] W. Liu et al., "Cultural adaptation of health assessment tools for diverse populations," *Cult. Med. Psychiatry*, vol. 46, no. 2, pp. 223-240, 2021.
- [17] K. J. Rothman, S. Greenland, and T. L. Lash, "Modern epidemiology," 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2020.
- [18] M. Sedgwick, "Cross-sectional studies: advantages and disadvantages," *BMJ*, vol. 356, p. j1072, 2021.
- [19] J. A. Weintraub et al., "Oral health surveillance among children and adolescents: methodology and clinical considerations," *J. Public Health Dent.*, vol. 81, no. 3, pp. 189-201, 2022.
- [20] S. A. Julious, "Sample sizes for clinical trials with normal data," *Stat. Med.*, vol. 23, no. 12, pp. 1921-1986, 2020.
- [21] R. Etikan, S. A. Musa, and R. S. Alkassim, "Comparison of convenience sampling and purposive sampling," *Am. J. Theor. Appl. Stat.*, vol. 5, no. 1, pp. 1-4, 2021.
- [22] L. M. Hooley et al., "Parental influence on children's oral health behaviors: a systematic review," *Pediatr. Dent.*, vol. 44, no. 2, pp. 95-108, 2023.
- [23] World Health Organization, "Oral health surveys: basic methods," 5th ed. Geneva: WHO Press, 2021.
- [24] P. E. Petersen and D. Baez, "Oral health questionnaires for adults and children," *Community Dent. Oral Epidemiol.*, vol. 41, no. 6, pp. 515-522, 2022.
- [25] J. Cohen, "Statistical power analysis for the behavioral sciences," 2nd ed. Hillsdale: Lawrence Erlbaum Associates, 2020.
- [26] S. R. Anderson et al., "Parental caregiving behaviors and oral health outcomes in children with disabilities: A systematic review," *Spec. Care Dent.*, vol. 43, no. 2, pp. 156-169, 2022.
- [27] J. M. Thompson and K. L. Davis, "Motivation and behavior change in pediatric oral health: Psychological perspectives," *J. Pediatr. Psychol.*, vol. 48, no. 4, pp. 234-248, 2021.
- [28] L. P. Chen et al., "Oral health disparities in children with special needs: A comprehensive analysis," *Community Dent. Oral Epidemiol.*, vol. 50, no. 3, pp. 189-203, 2023.
- [29] R. Kumar and S. Patel, "Parental involvement in oral health care for deaf children: A systematic review," *Disabil. Health J.*, vol. 15, no. 2, pp. 134-149, 2021.
- [30] A. Martinez et al., "Cultural influences on parental oral health behaviors in special needs populations," *Int. J. Paediatr. Dent.*, vol. 32, no. 4, pp. 445-458, 2022.
- [31] H. Wang et al., "Dental caries prevalence in deaf children across Southeast Asian populations," *J. Public Health Dent.*, vol. 81, no. 3, pp. 201-214, 2021.
- [32] M. E. Rodriguez and P. J. Kim, "Cross-cultural perspectives on parental involvement in children's oral health," *Global Health Action*, vol. 14, no. 1, pp. 1-12, 2022.
- [33] C. B. Wilson et al., "Methodological considerations in cross-sectional oral health research," *J. Dent. Res.*, vol. 101, no. 2, pp. 178-185, 2023.
- [34] N. S. Park and J. H. Lee, "Socioeconomic factors affecting oral health disparities in special needs populations," *J. Health Care Poor Underserved*, vol. 33, no. 2, pp. 567-582, 2022.